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Abstract 

The surface cur ren ts  and near fields of an infinite cylindrical 

dipole antenna excited at  a circumferential  gap of non zero  thickness and 

immersed  in a lossy plasma medium which may be in the general  case  both 

compressible and anisotropic, there  being a static magnetic field parallel  

to  the antenna axis, a r e  numerically investigated. The analysis proceeds 

f rom the linearized fluid equations for  the electrons (ion motion is neglected) 

together with Maxwell’s equations, and attempts to account for  the actual 

inhomogeneous ion sheath which forms about a body at floating potential in 

a warm plasma by including in some of the resul ts  a concentric f ree-space 

layer,  or vacuum sheath, between the antenna and the external uniform plasma. 

Four ie r  integrals a r e  obtained for  the various field quantities involved and a r e  

in particular examined numerically fo r  the antenna current  and the near electric 

field for  parameter  values typical of the E region of the ionosphere. 

t 

It is found that above f t  = % + f with f and fh  the electron 
P h ’  P 

plasma and cyclotron frequencies, and sufficiently below f t  (on the o rde r  of 

f t / 2 ) ,  the antenna current  is generally wavelike in the axial direction with a 

wave number KE, where KE<KEo fo r  f >ft and KE >KEo for  f <  f t ,  with KEo 

the f r e e  space electromagnetic ( E M )  wave number. The exception to tlhis is 

when the plasma is incompressible, isotropic and there  is no sheath, where 

then below f the current is evanescent along the antenna axis.  

is compressible, there is in  addition above ft  a small component of surface 

current  whose wave  number is near K 

current  is on the order  of 10 o r  l e s s  of that component near  KE and is thus 

of negligible importance in determining the antenna admittance. In the in te r -  

mediate range f t / 2 s  fc f t  there  is no w e l l  defined wave behavior of the antenna 

When the plasma 
P 

the acoustical  wave number, but this P’ 
- 4  
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I current,  the current then being generally evanescent in the axial direction. 

The plasma compressibility, vacuum sheath and plasma anisotropy thus serve 

to open up a region of antenna current wave propagation below f which van- 

ishes  when these three factors are all absent. 

t 

The plasma compressibility is also found to lead to E M  and acou- 

st ical  e lectr ical  fields at  f 

than the corresponding values just above o r  below f 

equal magnitude and opposite sign so that the total field amplitude is relatively 

insensitive to the changing frequency, as f passes  through f 

large E M  to acoustical propagation velocity ratio, it appears  that the total 

e lectr ic  field near an antenna pulsed at f = f 

remain large o r  even initially increase in value when the antenna excitation is 

removed, thus providing some insight into the relaxation resonance that has  

been observed with antennas in the ionosphere. 

which a r e  two o r  three o rde r s  of magnitude la rger  
P 

but which are of nearly 
P' 

Because of the 
P' 

i n  a compressible plasma may 
P 

vi i 



has been the subject of attention i n  a recent s e r i e s  of reports  (Miller, 1967a; 

anisotropic plasma and a compressible magnetoplasma as the medium in which 

the infinite antenna is immersed.  This study was begun in order  to gain some 

insight into the relative importance of the various factors  which may affect the 

admittance of an antenna in an ionospheric -like plasma medium, such as acous- 

t ical  and sheath effects arising from the non-zero plasma temperature,  and the  

plasma anisotropy which resul ts  from the static ionospheric magnetic field. 

ultimate goal 3f this s t u d y  'NU to exploit the theoretical findings i n  the design, 

application and interpretation of experimental methods utilizing radio frequency 

antennas as diagnostic tools for ionospheric measurements.  

The 

It is apparent that the infinite antenna model, f rom the view point 3f 

conforming to the i-czlities of the desired goal involving an actual antenna in the 

ionospheric plasma, is f a r  f rom ideal. 

that the theoretical ananysis may be formulated as a boundary value problem 

which includes without too great a complexity the important physical aspects  of 

the plasma of greatest  interest .  

voltage applied a c r o s s  the exciting gap, appears  to be a physically more  real is t ic  

assumption than that most often used in compressible plasma problems, a speci-  

fied cur ren t  distribution. 

antenria ar,a!ysis te  Iearr, something about the finite antenna is that the medium 

influence on the infinite antenna and actual finite antenna w i l l  be s imilar .  

while the infinite antenna approach cannot directly answer questions such as ,  

It has  the distinct advantage however, 

At the  same time the exciting source,  a known 

An assumption implicit in performing the infinite 

Thus 

1 



v .  

for  example, the medium influence on the effect of changing antenna length, it  

may be successful in showing the g ross  variations of antenna admittance due to  

changing the various plasma parameters.  

, 

In addition to hopefully shedding some light on the admittance de-  

pendence of the finite antenna on the plasma properties, a solution for  the 

infinite antenna current  may be of more direct use in a theoretical study of 

the finite antenna admittance. This is because the finite cylindrical antenna 

may be regarded a s  a truncated infinitely long uniform system. 

truncating the infinite antenna to finite length, there  wi l l  be multiply reflected 

current  waves on the finite antenna s imilar  to those on the infinite antenna. 

This  approach has been used by Chen and Keller (1962), and Hallen (1963) fo r  

f r ee  space, and suggested a s  a possible technique by Lee and Lo (1967)  for  the 

inc omp r e s s ib le  magnet opla s ma. 

As a result  of 

The purpose of this  report  i s  to discuss in grea te r  detail the current  

waves on the infinite antenna for the plasma models t reated in I, I1 and 111. 

attention wi l l  a lso be devoted to the antenna near field. 

Some 
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11. Theoretical  Considerations 
b 

(a) General Approach 

The formulation of the infinite antenna problem begins with 

Maxwell's equations together with the linearized fluid equations of motion 

f o r  the magnetoplasma, which may involve an  electron p res su re  t e r m  i f  the 

plasma is compressible. 

usual way by the separation of variables. Because of the symmetry  of the 

problem in  the cylindrical coordinate ( p ,  ~p , z) system used, where the 

antenna axis  and z-axis a re  coincident, the solutions are  dependent upon 

p and z only. 

The solutions to  these equations a r e  obtained in the 

The various physical quantities of interest  such as the electric 

and magnetic fields, electron velocity, etc. may be obtained f rom the z-com- 

ponents of the electric and magnetic fields as w e l l  as  the dynamic electron 

density, in the case  of the compressible plasma. These three quantities thus 

serve  a s  potentials which yield the remaining field variables.  The potentials 

a re  expressed formally as  a Four ie r  integral over the z -direction separation 

constant, p , of the product of the radial-direction solution given by a Hankel 

function whose argument involves the product of p t imes  the appropriate radial  

separat ion constant, and the Fourier  amplitude of the potential. 

t ransformed field quantities in  the p ,  p space satisfy the Four ie r  t ransforms 

of the boundary condition equations in p ,  z space, the Four ie r  potential ampli-  

tudes a r e  obtained f r o m  a matr ix  formed by the t ransformed boundary condition 

equations. 

Since the 

This  procedure is well known, and the details are  given in some 

detail i n  I thru 111. 

r e su l t s  in the case  of the compressible magnetoplasma, but the basic approach 

is the same. 

tudes have been obtained, i t  is necessary to  invert the appropriate Fourier  

It may be remarked that considerably increased complexity 

The problem is of course that once the Fourier potential ampli-  

3 
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integral to find a desired field quantity. 

character  of the kernel of the Fourier  integral, it is not possible to obtain an 

analytic solution for  the field quantity, except possibly for  some special  cases .  

Consequently, beyond the point of formally finding the analytic fo rm of the kernel 

of the Fourier integral, we a re  limited to  numerical computations for  investigat - 

ing various quantities of interest. 

Unfortunately, because of the complex 'C 

The details of this la t te r  step are  recounted at  length in I through 111. 

Since the quantity of pr imary interest  i n  these reports  is the infinite antenna 

admittance, which is found f rom the axial antenna current  a t  the exciting gap, 

the discussion of the numerical  approach used, and the resul ts  which are  p r e -  

sented in I through I11 a r e  confined almost entirely to  the antenna admittance. 

While this approach has  been satisfactory i n  view of our  concern with the infinite 

antenna admittance as the physically most significant quantity to  be obtained f r o m  

the analysis, it ignores much other potentially useful information that could also 

be obtained about the antenna fields and currents .  (This neglect of emphasis  on 

the antenna fields and cur ren ts  in favor of the admittance is also dictated by 

economic considerations of the computer t ime required for the calculations of 

the former  compared with the la t ter ,  as  w i l l  be made c l ea re r  in the subsequent 

discussion. ) 

In spite of the limitations which are  imposed on a thorough numerical  

investigation of the fields and currents ,  some limited calculations of these quan-  

t i t ies  have been performed. 

in the course of the admittance calculations has  provided valuable information 

about the antenna current  waves. 

the numerical resul ts  to be presented have been obtained. 

In addition, the computer output which w a s  produced 

The next section descr ibes  the manner by which 

4 
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(b) Method of Calculation 

I 

The starting point for  the numerical analysis followed in this 

study is the Fourier  integral for the antenna admittance, which may be 

written, with 6 the exciting gap thickness, 

Y = G + i B  

W 
r 

0 z=  6 1 2  

Since the assumed source is unit excitation voltage applied ac ross  the exciting 

iwt gap and varying a s  e , a l l  the quantities in (1) are implicit function of W, 

The antenna admittance, conductance and susceptance a r e  denoted respectively 

by Y ,  G, and B, with Iz the axial antenna current.  The Fourier  t ransforms in 

P -space of functions denoted by upper case  le t te rs  in coordinate space a r e  

shown by lower case  le t ters .  The axial current is seen to be given by 2nc 

t imes  the cp -component of magnetic field evaluated at  p=c with c the antenna 

radius. 

sheath-plasma model used in the analysis. 

plicated for  the anisotropic plasma, the explicit fo rm of h 

I through I11 for  only the isotropic case, a numerical matr ix  inversion having 

been used to find h ( 0  , p )  for the anisotropic case.  
9 

It is obvious that the analytic fo rm of h ( P  , p )  wi l l  depend on the 
i" 

Since h ( P , p )  becomes very com- 
cp 

(0 , p )  is given in 
cp 

A factor  appcars in the transforms of all the field quantities which 

is the "form factor" o r  spatial frequency spectrum in p -space of the assumed 

source,  which is 

5 
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If the exciting gap is of ze ro  thickness] an  approximation sometimes employed 

in  antenna theory, then it may be shown that the antenna current  is infinite a t  

the gap, i. e . ,  the integral  in (1) does not converge for  6 =O.  

case  for  the z-component of e lectr ic  field. The inclusion of a non-zero exciting 

gap thickness, besides being more  reasonable on physical grounds than z e r o  gap 

thickness, is required if the interpretation of the antenna admittance is to be 

unambiguous, 

-+ 

This  is a l so  the 

The difficulty of numerically evaluating the integral  of Eq. (1) is 

due for  the most part ,  as ide f rom the problem of obtaining a numerical  value 

for  the integrand function] to the location of an  infinity in the integrand, which 

for  the c a s e  of ze ro  electron collision frequency] may lie on the real P-axis. 

If the infinity does l ie on the path of integration, the improper integral  may be 

attacked directly by defining the admittance by the principal value of the impro-  

pe r  integral. An alternative method that could be employed is a deformation of 

the integration path around the singularity. This  has  been done in obtaining the 

infinite antenna free-space admittance reported on in I. 

to handle this  problem however is to employ a non-zero electron collision f r e -  

quency to remove the infinity f rom the real P-axis. At the same t ime,  the 

problem i s  made more real is t ic  since a t  least  in the lower ionosphere, the 

electron collision frequency is not negligible compared with the electron plasma 

frequency. 

different kinds of infinities, the imaginary par t  having infinities of opposite sign 

on either side of the singular point, while the real par t  does not change sign, for  

ze ro  collision frequency. 

par t  of (1) may instead by sharply peaked but of finite value, while the imaginary 

par t  has finite p e a k s  of opposite sign on e i ther  s ide of, and is ze ro  at, Some 

value of P . 

Perhaps  the eas i s t  way 

It should be mentioned that the real and imaginary pa r t s  of (1) have 

When there  is a non -zero  collision frequency, the r*eal 

6 
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While the non-zero electron collision frequency does remove the 

integrand infinity f rom the rea l  

typically by several  o rde r s  of magnitude in i t s  vicinity, for the collision f r e -  

quency values used in these calculations. In order  to economically and accu- 

rately integrate such a function it is necessary to greatly compress  the number 

of calculated points in the peaks compared with the region outside. 

gration routine which does this was developed, and provides a convergence check 

at each point of the numerical integration, based on the Romberg technique; it is 

discussed in detail in I. 

p -axis, the integrand may s t i l l  increase 

An inte- 

Besides the integrand peak just discussed, there  a r e  other consider- 

ations to be taken into account in numerically evaluating an integral of the kind 

shown in (1). 

latory behavior with p . 
this oscillatory behavior does not become significant until p"6-l. 

since the major contribution to the integral comes from p values o rde r s  of 

magnitude l e s s  than this,  for the gap thickness used in the study, then the oscil-  

lation of the integrand due to cos( /3 z) is not a factor of importance when calcu- 

lating the admittance. 

Because of the cos( b z)  t e rm,  the integrand w i l l  exhibit an osci l -  

F o r  the value of z used when Y is to be calculated, 6 / 2 ,  

However, 

If however, the current  is to  be calculated a s  a function of z, in order  

to investigate the current  waves on the antenna, then the onset of oscillatory inte- 

grand behavior due to the cos(p  z )  t e rm occurs  approximately when p-' z 

Thus, the la rger  the value of z for which the current  is required, the smaller  

the b value where the integrand oscillation begins. The problem which a r i s e s  

f rom th is  is that the numerical integration of an oscillatory function requires  a 

minimum of roughly six integrand values per  cycle in order  to be accurately 

evaluated. 

ing the number of integrand evaluations required for the numerical integration, 

-1 . 

F o r  large z then, this consideration becomes important in establish- 

7 



with the spacing along the p -axis going approximately as rr/6z. It may be 

added that a similar consideration applies when the various field quantities 

are to be calculated a s  a function of the radial  variable p,  the oscillatory 

behavior then ar is ing f rom a Hankel function whose argument contains p ,  which 

is a factor in the transformed field quantities. 

The difficulty which is encountered then when we want to calculate 

the current  along the antenna o r  the field variation with z and p is that the 

number of integrand evaluations required may become very large compared 

with those needed for  determining the admittance alone, and the sequence of 

abscissa  values required may vary with both z and p .  Because the most t ime 

consuming part of the integration is the integrand evaluation, this means that 

when z and/or  p a r e  large enough, each field value obtained may require  sub- 

stantially more computer t ime than does an  admittance calculation. When i t  is 

noted that the admittance calculations require  f r o m  30 seconds to 6 minutes o r  

more  each of computer t ime (IBM 7090) depending on the plasma model used, 

it becomes obvious that a systematic field and current  calculation is not practical. 

If the constraint is accepted then that integrand evaluations are to 

be made f o r  only the sequence of abscissa  values required for  the admittance 

calculation, it may s t i l l  be possible to c a r r y  out a limited investigation of the 

antenna fields and current.  The resu l t s  to be obtained in this  way would be 

roughly limited to  z and p values where the absc issa  spacing in the integrand 

peaks, o r  regions of greatest  contribution t o  the integral, are on the order  of 

r / 6 z  o r  ~ / 6 p ,  o r  smaller. 

in the integrand peak w a s  found to be about 

Since, a lso roughly speaking, the abscissa  spacing 

the value of p at i t s  center,  

which we denote here  a s  Po, then the largest  p o r  z value that can be used would 

be given by 

-1 x -  50 P o  ( 3 )  

8 
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where x represents  p o r  z. This  spacing in p w a s  typically required for a 

normalized convergence accuracy in the integration of l o d 4 .  If there  is an 

appreciable contribution to the integral f rom the p -range outside the peak, 

then the range of z o r  p that may be investigated can be very much reduced 

f rom that indicated by ( 3 ) ,  which thus represents  a very optimistic upper 

limit on z o r  p.  

6 

Even with the limitations thus imposed on the field and current 

calculations, some meaningful results can be obtained using the approach 

outlined above. 

It should be mentioned that these calculations have been done for the isotropic 

plasma model only. 

required a considerable modification of the computer programs written for  the 

admittance due to the storage requirements exceeding the computer capacity. 

The more  significant of these a r e  included in the next section. 

The same calculations for the anisotropic case  would have 

While a direct  calculation of the fields and current has  been some-  

what limited, there  is some potentially very useful information contained in  the 

sequence of abscissa  values used for the integration, and the corresponding 

integrand values. It w a s  mentioned above that for  zero  electron collision f r e -  

quency, an integrand infinity may be located on the r ea l  -axis. This infinity 

a r i s e s  because the integrand denominator goes to zero. 

nator is given by the determinant of the Fourier  coefficient matr ix  established 

by the boundary condition equations. 

known as providing a solution for  the free oscillations which may occur in 

boundary value problems. When the determinant, whi;.h we denote by D, is 

set  equal to zero  to provide an expression for the8  at  which these f r ee  osci l -  

lations occur, the equation D( R ) = O  is called a characterist ic equation and the 

solutions fo r  p may be called characterist ic roots, o r  characterist ic wave num- 

bers .  

The int egrand denomi- 

This type of determinant zero is well 

The abscissa  and integrand values obtained then in the course of evaluating 

9 



( l ) ,  (and which a r e  produced a s  output by the computer routine) would thus be 

capable of providing under certain conditions the characterist ic wave numbers 

when the collision frequency is zero. 

The advantage of finding the characterist ic waves which may 

propagate on the infinite antenna is twofold. 

and sheath on the character is t ic  waves may provide pertinent information about 

the relative effects of the various physical processes  being investigated. 

f rom the viewpoint of using the infinite antenna current  to investigate the t run-  

cated or finite antenna current,  the contribution to the total infinite antenna 

current  coming f rom the characterist ic wave is of importance in  determining 

the wavelike nature of the infinite antenna current  and the implications of this 

for  the finite antenna, in t e r m s  of resonant antenna length, etc. Thus, i f  the 

current  a t  the exciting gap of the infinite antenna comes for  the most par t  f r o m  

a peak centered at  

cos( Poz), i. e . ,  the character is t ic  wave ac t s  very nearly as an impluse o r  

delta-function centered at  6 o-  

Firs t ,  the effect of the plasma 

Second, 

Po, then the current  variation with z w i l l  be given by 

While the preceding discussion has  been concerned with the zero  

collision frequency situation, the actual calculations were ca r r i ed  out for  a 

non-zero collision frequency. 

frequency in the calculations is on the order  of 

plasma frequency, the character is t ic  wave solution obtained in this case  should 

not be too much different f rom that found in the coll isionless case.  

Since the value used for  the electron collision 

t imes  the radian electron 

This cannot be verified analytically in general ,  since the charac-  

te r i s t ic  wave number must be obtained by numerical  means,  but for  the sheath- 

less ,  incompressible magnetoplasma, an analytic expression for the charac - 

ter is t ic  wave number can be obtained fo r  the c a s e  of vanishing cylinder radius  

and is given by (Lee and Lo, 1967)  

1 
b 

10 
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I 
s 

I where 

UN' 
P o  U2 -H2 

= *VI - - 

N 2 = w / w  2 2  = f i / f 2  
P 

H = f h / f  

(4) 

1 The electron collision, cyclotron and plasma frequencies a r e  denoted by u , 
f and f respectively. We see that when V/u=(l,  P o  may be written 

I 

I h P 

2 1 -H 
(5)  

I 
I 

so  that a solution for P 

the same  amplitude but slightly different in phase compared with that for  the 

collisionless case. w i l l  be for this 

case  almost pure r ea l  of pure imaginary. 

for non-zero collision frequency is of practically 

I Depending on the values of N 2  and H, P 
0 

An obvious limitation of the numerical approach described above 

for  finding the characterist ic wave solution is that since the integration path 

is the r e a l  P -axis, the complex wave number is not established. The numeri - 

ca l  method used then, involving a s  it does ;he integrand values required for the 

numerical  integration, is capable of providing only the r ea l  component of the 

character is t ic  wave number and then only for the case where p 

real .  

wavelike behavior of the infinite antenna current,  this is not too ser ious a 

is almost pure 

In view of our interest  in  the characterist ic wave number a s  showing the 

0 

limitation however, since an imaginary P would be an indication of a charac-  

te r i s t ic  wave which is evanescent in  the z-direction. The r e a l  part  of P o  ob- 

tained f r o m  this approach will be denoted by KZr in the following. The existence 

of a complex wave number solution is discussed more  fully in section ( c )  below. 

It is apparent that having found the r ea l  part  of the characterist ic 

wave number fo r  a given situation, the infinite antenna current cannot be con- 

cluded to  exhibit a simple wave -like behavior associated with this wave number. 
11 



0 -  

The relative contribution to  the total current at  the exciting gap coming from 

the peak at  this wave number will determine this.  

Thus, in presenting the resul ts  for KZr in the following, we w i l l  

a lso show the ratio of the r ea l  component of the antenna current  a t  the exciting 

gap coming from the integration range p = 0. 9 KZr to p = 1. 1 KZr to the total 

real current  coming f rom p = 0 to p = 03. If this ratio is near unity, then, 

the z behavior of the antenna current  wi l l  be nearly cos(Kzrz). 

the characterist ic wave number then, the relative contribution to  the total current  

ar is ing f rom the peak and the consequent wave-like behavior of the total  antenna 

current  may be demonstrated. 

to this purpose since it has  a zero  at K 

and a positive maximum just above K z r '  

as a function of z w i l l  be included in the resul ts  s o  that the applicability of the 

Besides finding 

The imaginary antenna current  is not so suited 

with a negative maximum just below 

Some graphs of the calculated current  
z r  

approach outlined above may be shown. 

Finally, in order  to more  clear ly  show the dependence of KZr on the 

various plasma parameters ,  some graphs of the r ea l  part  of the integrand func- 

tion a s  a function of p will be shown. 

the current peaks which occur a s  var ies  and graphically i l lustrate the pro-  

blems encountered in  a numerical  integration of the Four ie r  current  integral. 

Such curves  wi l l  a lso show the widths of 

12 
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(c )  The possibility for complex wave numbers when the collision frequency 

is zero. 

. 

The discussion above concerning the characterist ic wave number 

implies, but does not state s o  explicitly, that when the electron collision f r e -  

quency is zero  the wave number w i l l  be pure r ea l  o r  pure imaginary. 

large extent this is only approximately t rue,  and is exact only fo r  the case of 

the isotropic, incompressible plasma, When the plasma is anisotropic and/or  

compressible, the characterist ic wave solutions may in  some cases  be nearly, 

but not exactly, pure real o r  pure imaginary. 

To a 

To cite a specific example, we may consider again the sheathless, 

incompressible, anisotropic plasma for which Lee and Lo (1967) obtained the 

character is t ic  solution for  the case of vanishing cylinder radius, a s  given by 

(4) above. Their  solution for p shows that whenever f > f t  or  f c f h ,  and f the 

solution for  P o  is pure real ,  it  being otherwise pure imaginary. Seshadri (1965)  

performed some calculations t o  solve the characterist ic equation for  this partic - 

ular  case  and found on the other hand that P o  is complex except when f <  fh  and 

f 

0 P' 

where it is pure real .  
P 

The answer to this discrepancy appears to be that Lee and Lo con- 

s ider  the  case of vanishing cylinder radius, where it then becomes possible to 

replace in the characterist ic equation the ratio of two Hankel functions of order  

ze ro  whose arguments a r e  proportional to c, the cylinder radius, by unity. F o r  

non z e r o  radius however, this ratio is complex. Consequently, while in the 

f o r m e r  case  the characterist ic equation D( ) = 0 has  only pure r e a l  coeffi- 

cients, and so yields a pure real or  imaginary solution, in the la t ter  case, it 

is complex and so has a complex solutisn., 

A somewhat analogous situation arises in the case of the compressible, 

isotropic  plasma, when f > f  In this case,  a pure r ea l  solution is found which 

is i n  magnitude on the order  of the plane wave EK propagation constant. 
P' 

A second 



solution is found near  the E M  plane wave propagation constant, but it is com- . 
plex, ra ther  than pure real ,  except in the limit of vanishing cylinder radius. 

This  is discussed in  Appendix C, where the characterist ic wave solutions a r e  

examined for the various plasma models considered in this report .  

. 

The conclusion to be drawn f rom this property of the characterist ic 

wave numbers when the plasma is compressible o r  anisotropic is that the non- 

ze ro  cylinder radius may result  in axially decaying characterist ic o r  free waves, 

propagating along the cylinder. This  may occur above f t  o r  f and in the absence 

of electron collisions. (This effect  of the non-zero cylinder radius upon the 

antenna conductance, and thus the power supplied by the source to the plasma, 

is very similar t o  that which is found to take place when the plasma is isotropic 

and incompressible, but has  a non-zero electron collision frequency. ) The 

f i e l d s  a t  the characterist ic wave number may be evanescent in the radial  direc - 

tion (as discussed in Appendix C),  but for  somewhat smallerb values, where the 

contrbution to the antenna current  f rom the peak centered at  the character is t ic  

wave number may s t i l l  be significant, they are radially propagating. 

P 

It may be seen then that the plasma compressibility and anisotropy 

may produce some rather  subtle effects, particularly when the character is t ic  

waves that may propagate along an  infinite cylinder a r e  considered. 

gation is confined to considering for  example, the pure r ea l  character is t ic  wave 

numbers for  the isotropic, compressible plasma, as Cook and Edgar (1966)  did, 

the resul ts  may mislead to overemphasizing the importance of the character is t ic  

wave corresponding to the EK propagation constant. The resu l t s  obtained by Cook 

and Edgar would lead to the conclusion that the plasma compressibil i ty is very in-  

fluential in determining the current  on the infinite antenna, whereas it w a s  es tab-  

lished i n  I that just the opposite is the case.  The important point is that in  o rde r  

to analyze the current flowing on an infinite cylinder, the entire problem, includ- 

ing the exciting source,  must be considered to  place the various factors  involved 

in their  proper perspective. 

given in the next section, particularly the graphs  of the integrand a s  a function of P . 

If the investi- 

T h i s  should be made c l ea re r  with the resu l t s  to be 

14 



. . *  

* 111. Numerical Results 

The resul ts  to be presented here  are extracted for  the most par t  

f rom the computer output produced in the course of obtaining the infinite antenna 

admittance values presented in  I through 111. 

and current values for  which some additional calculations were required. 

of the variety of the resu l t s  which follow, an  at  tempt has  been made to present 

them in a logical sequence, the results being grouped according to kind ra ther  

than by the plasma model used. This h a s  the advantage that the effect on a given 

quantity of changing the various plasma parameters  may be more  readily appre-  

ciated. The order  of presentation is: (a )  Integrand variation a s  a function of /3 ; 

(b) The r e a l  wave number KZr  a s  a function of frequency; (c) The rat io  of the 

peak contribution to the total  r ea l  current; (d)  Antenna current a s  a function of z; 

and (e) The antenna near-fields. 

An exception to this a r e  the field 

Because 

(a) Integrand variation a s  a function of P .  

A graph of the integrand of (1) a s  a function of 6 may be much more  

revealing than the admittance, which is an  averaged quantity, in demonstrating 

the role  of the various plasma parameters  a s  they influence the antenna currents.  

An example of this is shown in Figs. 1 and 2 which present the r e a l  component 

of the integrand of ( l) ,  denoted by i,(P ), as a function of 6 ,  for the isotropic 

plasma and both the sheathless and vacuum sheath models. 

incompressible (the electron temperature T=O K) plasma, and Fig. 2 is f o r  the 

compressible ( T = l ,  500'K) plasma (the EK wave is excited then), with an  antenna 

radius,  c, of 1 cm, an  exciting gap thickness, 6, of 0. 1 cm, electron plasma and 
4 -1 collision frequencies of 1. 5MHz and 10 s e c  

These resu l t s  a r e  obtained f o r  a perfectly reflecting, o r  rigid, boundary at  the 

plasma -sheath o r  plasma-cylinder, interface., fo r  the incident electrons. 

Figure 1 is for  an  
0 

, and an exciting frequency of 2. OMHz. 
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* r  

The sheath thickness for the vacuum sheath case  is 0.0799 m . 
equal to  5 electron Debye lengths (Dx)  for an electron temperature  of 1, 500°K 

and is denoted by X measured  in units of DA on these and subsequent graphs. 

Note that 

/"P 
DJ = 7 /  k T / m  

where k is Boltzmann's constant and m is the electron mass .  We thus regard 

the electron temperature  for calculating the sheath thickness and that used for  

the compressible plasma temperature  as independent quantities so that the 

sheath and compressibility effects may be separated. 

the temperature used to calculate DA wi l l  be 1, 500°K. 

Unless otherwise indicated, 

Figures 1 and 2 a r e  s imilar  in that each se t  of curves  exhibits a 

maximum in  i ( p  ) at about p = O .  028 m-'. 

number of an E M  wave in a plasma medium whose relative dielectric constant 

This corresponds to the wave R 

is, for small  electron collision frequency, 
2 Cr = ( 1 - N  ) 

and the wave number of the E M  wave is 

(7 )  

where v ~ i s  the f r ee  space velocity of light. Calculating KE f rom (8) yields 

KE = 0.0285 which agrees  with the peak in iR(6) of Figs.  1 and 2. It may be 

seen that on both graphs, the sheathless case  peak values of iR a r e  less ,  but 

fa l l  off more  slowly than the corresponding vacuum sheath curves. 

The compressible resul ts  of Fig. 2 exhibit in addition to the peak 

The EK wave number in the plasma at  @ =KE, another peak at about B = 33.2. 

medium, again for small  electron collision frequency, is 

where vr i s  the r m s  thermal  electron velocity. 

f r o m  (9 )  is K ~ =  33.1 m-', again in agreement  

18 

The value for  Kp obtained 

with the peak in i,( k3 ). 



. 
I 

e We see  that for the compressible plasma then, two distinct 
I 
I characterist ic waves, o r  surface current waves, a r e  excited, one the EM 

mode, and the other the EK mode. The EK mode current  is about 4 orde r s  

of magnitude l e s s  than the EM mode current for  the sheathless case,  while 

the addition of the sheath increases  the difference to about 7 o rde r s  of mag- 

nitude. Thus, while the source may excite a current wave on the antenna 

with the EK wave number, i t  has  little effect on the total  current  which is 

dominated by the EM contribution. 

is not produced at  all, i f  the rigid boundary condition used for these calcu- 

lations is replaced by a perfectly absorbing, o r  soft boundary ( see  Miller, 

1967a) .  

effectively decouples the antenna from the EK mode, leading to the same r e -  

sul ts  as the soft boundary. 

It should be mentioned that the EK mode 

Also ,  the use of Balmain's (1966) absorptive boundary condition 

This  is discussed in Appendix A. 

It is obvious upon seeing the  resul ts  of Figs. 1 and 2 that i f  only 

the pure r e a l  characterist ic wave numbers a r e  sought, then because the wave 

number near  KE fo r  the compressible plasma is complex (for both the sheath- 

less and vacuum sheath cases) ,  the predominant wave-like behavior of the 

antenna cur ren t  may be thought to be on the order  of Kp. 

and as w i l l  be subsequently shown directly in showing the antenna current a s  a 

function of z, the total current var ies  more  nearly with the wave number KE, 

with only a smal l  superimposed ripple due to the current contribution from the 

peak near 5. 
frequency than is the peak a t  KE, we w i l l  also show below the result  of changing 

the collision frequency on the curve f o r  the sheathless case  of Fig. 2 ,  in  order  

to  s e e  whether the peak at Kp may become doriiifiant 7rr'4L W l L l l  r r n - 7 C .  "a l lAL*15 nnlliS;nn L V I I I  l V l .  

A s  indicated by Fig. 2,  
/ 

Because the peak at Kp is more sensitive to the electron collision 

. .  

frequency. 



It is interesting to note that the infinite antenna conductance, 

comes f rom integrating the i ( B )  curves such as shown in Figs.  1 and 2 R 

. -  
which 

does 

. 

not differ by more than 5 percent for the four cases  considered. 

conductance, as  mentioned, tends to average out what are significant features  

in i ( 6 ), as shown by Figs.+ and 2 .  

Thus, the 

R 
Fig. 3 shows iR(B ) for the sheathless case with the electron t e m -  

perature a parameter,  and a frequency f of 1 . 4  MHz, the other parameter  values 

being the same as fo r  Figs. 1 and 2. The T = O°K curve alone has  no peak, 

with the other curves  exhibiting peaks in iR( B ) that shift to  lower values of B 

with increasing electron temperature.  

non-zero electron temperatures  thus has the effect of causing a surface current  

wave to be excited. 

sensitive function of the electron temperature,  fo r  the value of electron collision 

frequency used here,  though the curves of i,( B ) for  the various temperatures  

a r e  quite different, This  is discussed in more  detail in I. A small peak may be 

seen near  p = 0 in  the iR( f l  ) curves;  this does not appear to  be associated with a 

characterist ic wave solution a s  the imaginary current  component, iI( @ ), does 

not change sign there ,  nor is the peak height a function of collision frequency. 

The vacuum sheath thickness, X, is a parameter  on Figs.  4 and 5 

The plasma compressibility due to  the 

It is of interest  to note that the conductance is a not very 

which present i ( B ) for the incompressible and c ompressible plasma respec  - 

tively, for a frequency of 1 MHz and the other parameter  values remaining the 

same as for  the previous figures. A comparison of Figs.  3 and 4 reveals  that 

increasing the vacuum sheath thickness for the incompressible plasma has  a 

very s imilar  effect to  increasing the electron tempera ture  for the sheathless,  

compressible plasma. A similar  effect has  been remarked  on in I where the 

vacuum sheath and plasma compressibility were found to influence the antenna 

admittance in much the same way. 

R 
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temperature  T a parameter.  
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The vacuum sheath 

the value ofp at which the peak 

may be observed in Fig. 5 to  a lso decrease 

in iR( 6 occurs  for the compressible plasma. 

The sensitivity of the peak location of i,( B 

compressible case  of Fig. 5 than the incompressible case of Fig. 4. 

becomes large enough however, the difference between i,( fl ) for  the com- 

pressible and incompressible plasma becomes less .  

exhibited by the antenna admittance . 
compressibility on the admittance and antenna current is significantly de - 

creased,  and that the E K  wave may be effectively decoupled f rom the plasma, 

by the vacuum sheath. 

to X is seen to be less for  the 

When X 

This feature is also 

It thus appears  that the effect of plasma 

We present iR( 8 )  in Figs. 6 and 7 for the sheathless case,  and 

the incompressible and compressible plasmas respectively, with the collision 

frequency a parameter.  

previous graphs with the exception of f ,  which is 1. 4 MHz. The resu l t s  of 

Fig. 6 for  the incompressible case  have no peak in i R ( p  ) except the small 

increase near P = O  discussed previously. In addition the magnitudes of the 

iR( p ) curves of Fig. 6 are seen to be proportional to u ,  with the result  that 

the conductance is also linearly proportional to v. 
the conductance in the incompressible, sheathless plasma is ze ro  below the 

plasma frequency when the electron collision frequency is zero.  

The other parameter  values are the same as for  the 

This  is as expected, since 

It is also in-  

teresting to  note that since the iR( ) 

on Fig. 6 ,  the z -variation of the r ea l  

evanescent, since 1 iz::2z d S 4  e -za 

0 
2a 

-1 2 2  curve var ies  approximately as ( 6 +a ) 

curren t  component at least, wi l l  be generally 

This wi l l  be verified to be the case when the cur ren t  variation with z is given 

in section 111 d. 
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* .  

In Fig. 7 however, where the compressible plasma is considered, 

a very different result is observed. 

c rease  in magnitude and decrease in  width with decreasing )) with the result  

that the conductance is almost independent of u,  a phenomenon discussed 

more  fully in  I. Further ,  as 1/ is decreased, the proportion of the total  cu r -  

rent contributed by the peak appears  to increase since the variation of i ( p ) 

outside the peak is proportional to u . Since the plasma is completely reactive 

below the plasma frequency for zero  collision frequency, then in the absence of 

a sheath the conductance is expected to be zero. 

taken, then the width of the peak in i,( P ) must eventually decrease towards 

ze ro  more  rapidly than the height approaches infinity, so that the integral of 

i ( p )  approaches zero. The behavior of i ( p )  is examined in Appendix B 

where the limit*0 is considered, and the dependence of the conductance on 

the electron temperature  and collision frequency for  this limit is examined. 

The peak in i ( p  ) may be seen to in- R 

R 

Thus, i f  the limit v- 0 is 

R R 

The resul ts  of varying the electron collision frequency for  the in- 

compressible plasma when there  is no sheath is shown in Fig. 8 for  the case 

where f 7f 

for  Fig. 6. 

and decreases  in  width in  inverse proportion to u, s o  that the conductance is 

near ly  independent of the collision frequency. 

f now being 1. 6 MHz, the other parameters  having the values used 

There it may be seen that the peak in iR( 8 )  increases  in  magnitude 
P’ 

In Fig. 9 are shown the resul ts  for  the compressible plasma and 

the sheathless case for various collision frequency values, and a frequency of 

2MHz, with the other parameter  values a s  used for Fig. 7.  Here we see that 

for  the compressible plasma, the peak near KE is not affected by the changing 

vaiues of coilision frequency, while that =ear I( 

in  magnitude asB is decreased. 

decrea-ses i n  width and increases  P 
When the collision frequency is made zero, 
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then i ( 

infinite then a s  discussed in Appendix B. 

) has no peak near  Kp, although the imaginary part ,  i,( B ), becomes . R P  

In the case of zero  collision frequency, the admittance may be 

obtained by deforming the integration path. 

antenna conductance and susceptance are given in Table I for  the sheathless, 

F o r  purposes of comparison, the 

compressible plasma as a function of the collision frequency for  f = 2MHz. 

Also given is the incompressible admittance. It may be seen that neither 

the conductance nor the susceptance is very  sensitive to 

plasma, even though the iR( p ) curve does exhibit a considerable collision f re  - 

quency dependence near  Kp. The important point is that the admittance is due 

principally to the peak near  KE which is not affected by changing 11. It thus 

seems  obvious that an analysis of the current  on an infinite cylinder such as 

for the compressible 

performed by Cook and Edgar (1966) which is concerned with only the charac-  

ter is t ic  waves with pure real wave numbers on the cylinder, is incapable of 

providing any real insight into the current  on an  antenna in  a plasma because it 

ignores the more important current  contribution from the peak near KE. 

is especially so i f  the character is t ic  wave solution which is neglected has  a 

This  

complex wave number with a small imaginary part  so  that the resulting atten- 

uation on a short antenna may not be too important. Incidentally, Wunsch (1967) 

has  found the current on a short  antenna in a compressible isotropic plasma by 

solving a pair  of coupled integral  equations for  the current ,  and finds current  

components with two different wave numbers on the antenna, one near  KE and 

the other near Kp. 

The four Figs. 6 through 9 which show iR( ) with I /  a parameter  

se rve  to i l lustrate the independence of K 

of the current  wave propagation constant may be obtained as previously outlined. 

This  question w i l l  be  discussed more  in presenting resu l t s  f o r  K 

on and to verify that the real part  z r  

in section I11 b. z r  
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Sheathless Case 

f = 2  MHz, f =1.5MHz 
P 

u G B 
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lo4  0. 7691 0. 1355 

1 o2 0. 7690 0. 1358 

l o 1  0. 7689 0. 1357 

0 0. 7679 0. 1353 

l o 4  0.7062 0, 1556 

0 0.7061 0. 1561 

f=2MHz, f = O  
P 

1. 126 0.2663 



(b) The Real Wave Number KZr 

Having gained some insight into the dependence of i,( 6 )  on the 

exciting frequency and the plasma parameters ,  we wi l l  now present the r e -  

sul ts  obtained f o r  KZr f rom the iR( p) variation with B , a s  shown in the 

preceding graphs. The KZr values a r e  found, as was previously discussed, 

f rom the value of ,!3 a t  which a peak in i,( B ) occurs  accompanied by a sign 

change in i,( 8 ). The KZr values thus obtained should be, for a smal l  value 

of electron collision frequency, nearly the same a s  the r ea l  components of 

the B o  values which satisfy 

D ( 8 )  = 0 (10) 

for  zero collision frequency, where D is the matr ix  coefficient determinant 

previously discussed. Though the KZr values we find by this  approach cannot 

be verified from an analytic solution of (10) for  the general  case, an approxi- 

mate  solution for the incompressible magnetoplasma a s  given by (41, and the 

compressible, isotropic plasma, both for  the sheathless case  only, can 

readily be found. The agreement  between these approximate analytic solutions 

for these special cases  and the KZr values obtained by the method outlined wi l l  

be discussed in  presenting the resul ts .  

We now present in Fig. 10 the real wave number solutions, KZrJ  a s  

a function of frequency, for  the incompressible, anisotropic plasma model f o r  

both the sheathless and 5 D l  thick vacuum sheath cases .  Two s e t s  of curves  f o r  

each sheath representation a r e  included, one for  the case  where f = 1.5 MHz and 

fh  = 1.0  MHz, and the other where the values of f and fh a r e  interchanged. The 

value of electron collision frequency used here  is v = 10 sec  ', and the antenna 

radius employed for these calculations is 1 cm. 

P 

P 
4 -  

If  we examine f i r s t  the sheathless cases  of Fig. 10, we see  that 

2 2  there a r e  no values f o r  K zr h t t  h p  
ment with (4) which shows that in this frequency range, the character is t ic  wave 
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between f and f (f =v f +f ). This result  is in ag ree -  



Fig. 10. 'The r ea l  component of the characterist ic wave fimiber, K 
a function of frequency for the anisotropic, incompressible z r' plasma, 
and the sheathless and 5 Debye length vacuum sheath cases .  

as 
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number is pure imaginary and that consequently the current  wave is evanes- 

cent in  the z-direction. 

be verified to be equal to  the analytic solution for this case,  given by (4) .  

The KZr values outside this  frequency interval may 

When the vacuum sheath case is considered however, it is found 

that there  is no cutoff region, but the KZr values become fairly large in the 

region where the sheathless case is cutoff. The effect of the sheath outside 

this frequency range is to increase the values of K 

sheathless case, above f and to decrease them below fh. t’ 

becomes much la rger  than f t  or  is sufficiently less than f and fh,  then KZr 
P 

may be observed to approach KEo, the free-space wave number. 

compared with the z r  
When the frequency 

In the region 

above ft ,  where KZ$KEo, the current waves are  sometimes called fast  waves 

since their  phase velocities exceed the f r ee  -space velocity of light, while in 

the region below fh  and f t ,  they may be called slow waves because their  phase 

velocity is less  than the velocity of light. 

It is of interest  to r emark  that for  the sheathless case  where an  

analytic solution may be obtained for KZr as previously mentioned, in  the limit 

of vanishing cylinder radius, the frequency range can be divided into five r e -  

gions of different wave behavior ( see  Lee and Lo, 1967) .  

wave as one which propagates in the z-direction but is evanescent in the radial  

If we denote a surface 

direction, then the five regions may be character ized as follows: (1) f > f t ,  one 

fast  wave and one surface wave; ( 2 )  f e f cfh, one slow wave and one surface 
P 

wave; ( 3 )  f <  fh, f two surface waves; (4)  fp ,  fh< f C f t ,  two radially propa- 

gating waves evanescent in the z -direction; (5)  f h c  f C:f 

in both the z and radial  directions. 

because of the birefringence of the medium resulting f r o m  i t s  anisotropy, but 

P’ 
two waves evanescent 

P’ 
It should be noted that there  are two waves 

the two waves have the same magnitude of character is t ic  wave number. 
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I . We next present in Fig. 11 the values for  KZr a s  a function of 

frequency fo r  both the compressible and incompressible isotropic plasmas, 

and the sheathless and 5 Dlthick vacuum sheath cases .  

quency is 1. 5 MHz and the other parameter values a r e  the same as used for  

Fig. 10. It is very interesting to see that above f there  a r e  two charac-  

ter is t ic  wave number solutions, one which is approaching KEo with increas-  

ing frequency, and the other which is approaching Kpo, where 

The plasma f r e -  

P’ 

0 - -  
KPo - vr 

with v the r m s  electron velocity. r 

is significant, and resul ts  f rom the plasma compressibility, the one whose 

wave number is near  K being an electrom.agnetic type wave and the other 

being a n  acoustical o r  electrokinetic wave. The relative importance of the 

two waves in determining the antenna admittance depends very much on the 

contribution to the total  current resulting from the currents  associated with 

the character is t ic  waves, a topic which has been previously discussed, and 

which will be pursued further in  the next section. 

The existence of two characterist ic waves 

Eo 

Below the plasma frequency, we observe that there  is no wave 

number solution fo r  the sheathless, incompressible plasma, a result  which 

is in agreement with the formula given by (4 )  i f  H is set  equal to zero  there ,  

The other  three cases  shown on Fig. 11 do however have solutions below f 

which may be seen to peak rather  sharply near f 

then decreasing in value with decreasing frequency so that sufficiently below 

f 

ca se  of the incompressible, anisotropic plasma shown in Fig. 10. 

P’ 
where they approach Kpo 

P , 

they again approach KEo. This  behavior is s imilar  t o  that found for the 
P’ 

While an approximate analytic solution has been presented above 

for  KZr  for the incompressible magnetoplasma, we have not discussed this 

possibility for  the compressible, isotropic plasma. The development of 
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0 X=O;T=O"K 
a X = 5 ; T = O 0 K  

@ X=O;T =1,500°K 

@I X=5;T=1,50OoK 

f,,= I.5MHr 
c =  I cm 
S=O.Icm 
Y =io4 sec-I 

I I 
I 2 3 I 0-3b 

f (MHr) 

Fig. 11. The r ea l  component of the character is t ic  wave number, KZ , as 
a function of frequency for  the isotropic incompressible a n a  com-  
pressible plasmas, and the sheathless  and 5 Debye length vacuum 
sheath cases.  
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Appendix C includes a discussion of this, where f rom the smal l  argument 

approximations fo r  the cylindrical functions i t  is shown that above f two 

possible solutions for  KZr a r e  given by 
P’ 

and 

where 

r) n 

K ~ ~ ‘ (  1 - N ~ )  
= RePo2 = 

1 -  

; B < K E o  
2 

z r  N ~ ~ ~ ( A ~ ~  n2) K 

K = B 2 = K ~ , ”  (I-N~) z r  0 
(10) 

and the electron collision frequency is taken to be zero,  

above, (91, is seen to be transcendental, involving 13 on both s ides  of the 

equation. Since a solution for  B will be on the o rde r  of KEoJ the log t e r m  in 

The f i r s t  expression 

A 
in A e. Because the log arguments a r e  smal le r  than unity, then the ratio of 

the log t e r m s  wi l l  be less than unity and the denominator of (9 )  w i l l  be l a rge r  

than l - N  . 
as small a s  that found for the incompressible plasma, K E o W J  which is 

indeed the case  as shown on Fig. 11. The solution for  B near KPo given by 

(10) is a l so  found to agreement with the calculated resu l t s  of Fig. 11. 

w i l l  have an argument on the order of v / v  t imes  that of the log t e r m  
r I  

2 Consequently the solution fo r  should be l e s s  than KEo, but not 

When f < f only one solution is obtained, and it  is given by ( 9 )  
P’ 

also, but with replaced by P 
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If N becomes large enough, then (9) is approximately 

Again, since ,'i > A e ,  and the log arguments are less than unity, their  ra t io  

in (11) is larger than unity, and exceeds KEo, as shown by the graphs of 

Fig. 11. In the range where N is near unity, then an approximate solution 

P 

2 fo r  B is 
2 N 2  B ( N  -1) KPo -) 2 

N'( c r  N -1 
(12 )  

This  expression may be verified by calculation to be also in approximate 

agreement with the resu l t s  of Fig. 11. 

It is interesting to observe that the characterist ic wave solution 

below, but near, the plasma frequency, is a hybrid wave involving both the 

electron thermal motion and the electromagnetic type wave. This  solution 

does not exist when the plasma is incompressible, as may be verified in  

Appendix C where the limit vr-0 is investigated. 

that (9 )  and (10) may be combined into one expression, a s  

It may also be verified 

In( I XeIc r / 2 )  
which is valid for any f # f 

P' 
The KZr values for  the compressible magnetoplasma, and the 

sheathless case only, a r e  shown in Fig. 1 2 ,  where an  electron temperature  

of 1, 500°K has  been used together with the plasma and cyclotron frequency 

values employed fo r  the incompressible magnetoplasma resu l t s  of Fig. 9 .  
4 -1 The collision frequency is again 10 sec  . The resu l t s  shown here  for  the 

compressible magnetoplasma a r e  very s imi l a r  to  the corresponding curves  
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x =o 
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=io4 Wc-1 
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Fig. 12. The r e a l  component of the characterist ic wave number, K 
a function of frequency for the anistropic zaxpres s ib l e  plasma zr’ and 
the sheathless case only. 

as 
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of Fig. 9 for the incompressible magnetoplasma, below the upper hybrid 

frequency. Above f however, are found two characterist ic wave number 

solutions, one near K We again see evidence of 

the plasma compressibility then through a characterist ic wave number which 

is dependent upon the thermal  electron velocity in the plasma. 

contribution coming from the peak near 5 is found to be of little importance 

compared with that due to the peak near KE however, a result  similar to  

that found for the isotropic compressible plasma. 

t 

and the other near 5. E 

The current  

(c )  The Antenna Peak-to-total-RealCurrent Ratio. 

The ratio of the r ea l  antenna current  at  the exciting gap coming 

f rom the integration range 

current  is shown in the next set  of graphs, which a r e  presented in the same 

order  a s  in the previous section. It should f i r s t  be mentioned however, that 

p= 0. 9KZr to p= 1. lKzr  to the total  real gap 

while the compressible plasma model was found to have two wave number 

solutions above f o r  f,, depending on whether the plasma is isotropic o r  

anisotropic, the current contribution coming f rom the wave number near  Kp 

amounted to l e s s  than 10 of the total current .  Consequently, on the current  

P 

-4  

ratio curves  to  be shown, we res t r ic t  our attention to the wave number near  

KE,  above f or  f t .  

KZr, which is the one used in obtaining the cur ren t  ratios to be given. 

Below these frequencies there  is only one solution for  
P 

In Fig. 13 a r e  shown the current  ra t ios  a s  a function of frequency 

f o r  the incompressible magnetoplasma for  the same  s e t s  of plasma parameter  

values a s  employed for Fig. 10. We note that above f and below fh  the rat ios  

a r e  generally 0 . 5  o r  la rger .  

f and f because there a r e  no K solutions there ,  the vacuum sheath curves  

do cover the entire frequency range considered. 

sheath current ratios a r e  smal le r  than 0. 1 in  the frequency range extending 

roughly f rom f t  down to ( f t+ fh ) /2 .  

t 
While the sheathless  c a s e s  a r e  not shown between 

t h z r  

It may be seen that the vacuum 

It is obvious that the width of the frequency 
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Fig. 13. The r e a l  current ratio ( r e a l  current  f rom P = 0.9K to  1. 1 
K to . total  r ea l  current) a s  a function of frequenc$for the 
anisotropic, incompressible plasma and the sheathless and 
5 Debye length vacuum sheath cases .  
2s 
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range of small  current ra t ios  is dependent upon the vacuum sheath thickness, 

the thicker the sheath the narrower the resulting frequency interval of smal l  

current  ratios. 

W e  may thus conclude that in any case,  above f and below fh,  t 
the antenna current w i l l  have a wave-like behavior with a wave number given 

by KZr. When there  is a vacuum sheath present, the wave-like behavior w i l l  

extend to  frequencies somewhat higher than f 

tween f and the vicinity of f t h 

wave along the antenna, which is in agreement with the analysis of Lee and Lo 

(1967)  outlined above, and where the current  decays in the z -direction. 

There  is a cutoff region be-  h’ 

where there  is no appreciable propagating current  

The current ra t ios  for the isotropic compressible and incom - 

pressible plasmas and the sheathless and vacuum sheath cases  corresponding 

to the resul ts  of Fig. 11 a r e  shown in Fig. 14. 

all the rat ios  a r e  on the order  of 0. 5 o r  larger .  

with the exception of the sheathless,  incompressible case  which has no KZr 

solution below f 

rent is thus expected to have a wave-like behavior with wave number K Z r  a t  

all frequencies except in the immediate vicinity of f f o r  the compressible and/ 

o r  sheathed isotropic plasma. 

P’ 
It may be seen that above f 

Below approximately 1. 4 MHz, 

the current  ratios a r e  again 0. 5 o r  la rger .  The antenna c u r -  
P’ 

P 

The last  graph of this section, Fig. 15, shows the current  ra t ios  

for  the sheathless, compressible,  anisotropic plasma for the plasma param - 

e te r  values used in Fig. 12. Here  it may be seen that the current  ra t ios  a r e  

la rger  than 0 . 5  above 2 to 2.  5 MHz and below 1. 5 MHz, with the current  ratio 

for  fh= 1. 5 MHz exceeding that f o r  fh=  1 .0  MHz over  most of the frequency range. 

A comparison of Fig. 15 with the vacuum sheath curves  of Fig. 13 shows them 

to  be very similar.  

of Figs. 10 and 12 .  

A similar  observation can be made about the K Z r  curves  

It is interesting to note that the corresponding admittance 
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Fig. 14. The r e a l  current  ra t io  ( rea l  current  f rom b = 0.9K to 1. 1 
K 
is%ropic compressible  and incompressible plasmas, and the 
sheathless and 5 Debye length vacuum sheath cases .  

to total r ea l  current) as a function of f requencyfor  the 
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Kwm to total real current)  a s  a function of frequency for the 
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an”i’sotropic compressible  plasma and the sheathless case  only. 
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. 
. resul ts  for  these two cases  are also quite similar, reflecting the interrela-  

tionship which exis ts  among these quantities, and the similari ty of the vacuum 

sheath and plasma compressibility influence on the infinite antenna. 

observation also holds for  the isotropic plasma. 

This  

(d) Antenna current as a function of z. 

A limited amount of results for  the axial current  on the antenna 

obtained f r o m  a direct evaluation of the Fourier  integral for  the antenna cu r -  

rent are presented in  this section. 

f o r  the isotropic plasma only, since the nature of the resul ts  and the conclu- 

sions that can be drawn f rom them are  not necessarily dependent on the plasma 

model used. 

A s  i n  section (a), the discussion here  is 

The total complex antenna current  (2rrc t imes  the surface cur ren t /  

unit length) is shown as a function of z i n  Fig. 16 for  the incompressible plasma 

with a 5D vacuum sheath, a frequency of 1. 55 MHz, and the other plasma pa r -  

ameter  values as used for  the preceding isotropic plasma results.  We see that 

the r e a l  current  component, shown by a solid line, var ies  in a more regular 

way with increasing z than does the imaginary component, shown by a dashed 

line. The wave-length of the current sample shown on Fig. 16  is for the real 

component about 680 m, corresponding to a wave number of 9 . 2 4 ~ 1 0 - ~ m  . 
The value of KZr on Fig. 11 f o r  fl3-s particular case  is 9 . 5 ~ 1 0 - ~ m - ~ .  This 

result ,  together with the current  ratio graph for  this case  a s  shown on Fig. 14, 

demonstrates  the validity of the method used for  finding the characterist ic wave 

solutions as previously outlined and determining the wavelike nature of the 

antenna current.  

P 

-1 

It is apparent that the imaginary part  of the axial antenna current  

has  some higher spatial  frequency components than does the r ea l  current,  as 

evidenced by the oscillations superimposed on the predominant wave behavior 



f =l.55 MHz 
0.3 - 

L I  I I I I I I I I I 
I 2 3 4 5  6 7  8 9 IO -0.3 

Fig. 16. The r e a l  and imaginary components of the infinite antenna current  
as a function of axial distance z f r o m  the exciting gap for  the i so-  
tropic incompressible plasma and f >f  with a 5 Debye length 
vacuum sheath. P 

f p  = 1.55 MHz 
f = 1.5 MHz 

=io4 sec? 

c =Icm ,6=0.lcm 

3 4 5  6 7  8 9 IO 

z (IO2 METERS) 

Fig. 17. The real and imaginary components of the infinite antenna cur ren t  
as a function of axial distance z f r o m  the exciting gap for  the i so -  
tropic compressible  plasma and f > f  with a 5 Debye length vacuum 
sheath . P 
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. 
+ which var ies  a s  K Since the integration range required to find the imagi- 

nary current extends to  la rger  values of fi than does the corresponding inte- 

gration range f o r  the r ea l  current (this is discussed more  fully in I) this is 

z r '  
1 

I 
I not unexpected. Taking both current  components together however, as plotted 
I 

I in  Fig. 15, the surface current on the antenna var ies  nearly a s  exp 

A(z),  where A(z) is an attenuation factor. 

The case of the compressible, 5% vacuum sheath model is shown 

next in Fig. 17, again for a frequency of 1. 55MHz and the other plasma pa r -  

I ameter  values as used for  Fig. 16. The resul ts  shown on Fig. 17 a r e  s imilar  

to those of Fig. 16  for  the incompressible case  except that the antenna current 

in the la t ter  case  exhibits somewhat more superimposed ripple. 

wave length in Fig. 17 f rom the r ea l  component is approximately 640m, so  

that the wave number is 9 . 8 2 ~ 1 0  m , which is again in agreement with the 

graph of Fig. 11. 

The current 

-3  -1 

The current of Fig. 17 may also be approximately represented by 

. A ( z )  where now the function A(z) appears to be a more  ra- exp i(wt-KZr 

pidly decreasing function of increasing z than was the case for the incompress-  

ible plasma. 

compressible  plasma a s  compared with the incompressible plasma because the 

EK wave experiences more  lo s s  p e r  unit length in the lossy plasma due to i t s  

shorter  wave length. Viewed in  another way, the spatial frequency spectrum 

of the t ransformed current  is broader and l e s s  peaked for  the compressible  

plasma than fo r  the incompressible plasma, which produces the increased z - 

attenuation of the current  for  the former  case. 

curves  showr? in Figs.  1 and 2. 

by a sma l l e r  current  ratio which is also an indication of an increased dispersion 

of spatial  frequency content in the iR( 13 ) curve. 

[ .)I 
This attenuation of the current with z may be grea te r  for the 

This is illustrated by the i,(B ) 

A greater  z-attenuation may also be indicated 

Finally, we have pointed out 

47 



that the characterist ic wave solution near KE is complex, for  the com- 

pressible plasma, thus indicating an attenuation in the z-direction of the 

total current  which comes principally f r o m  the current  peak associated 

with the characterist ic wave number solution near KE. 

In order  to further demonstrate the feasibility of determining 

the general  nature of the antenna current f rom the KZr solutions and the 

current  ratios or  the i,( B 

spectively the complex antenna cur ren ts  for  the incompressible and com- 

pressible plasmas and the ~DA vacuum sheath, for frequencies of 1.45 and 

1. 50 MHz, the other parameter  values remaining the same as for Figs. 16 

and 17.  

curves  we present in Figs. 18 and 19 r e -  

We see  that at  1. 45 MHz, which is l e s s  than the plasma fre- 

quency of 1. 5 MHz, the currents  for both the compressible  and incompressible 

plasmas decay quite abruptly near  the exciting gap, with the r e a l  component 

in particular becoming negligible a t  distances grea te r  than 100 m f rom the 

source. The imaginary component, after the initial fa l le f f ,  is oscil latory 

in nature, but exhibits no c lear  wavelength, as do the cur ren ts  a t  f = l .  55MHz. 

It should be mentioned here  that the current  w a s  calculated at  20m intervals,  

s o  that a current wavelength shorter  than th i s  would not be detected. 

because of the problems previously discussed concerning the field and current  

calculation when the sequence of abscissa  values is determined only by the a d -  

mittance evaluation, it does not appear worthwhile to  find the current  at  a 

c loser  spacing along the antenna axis since the accuracy cannot be expected 

to be very good beyond 100 to 200m. 

order  of magnitude for the current  however, especially f o r  the r e a l  component 

whose effective integration range is much less than f o r  the imaginary component, 

as mentioned above. 

However, 

The resu l t s  should provide a reasonable 
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8. The r e a l  and imaginary components of the infinite antenna current  
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Fig. 19. The r ea l  and imaginary components of the infinite antenna current 
as a function of axial distance z f rom the exciting gap for  the i so-  
tropic, compressible plasma and the two cases  f c  f and f = f 
with a 5 Debye length vacuum sheath. P P' 
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. 
The currents  at  1. 5 MHz do not decay as rapidly as is found at  

The imaginary component a s  a matter of fact, actually increases  1 . 4 5  MHz. 

ra ther  abruptly upon moving away f rom the exciting gap. 

component for  the compressible plasma is again seen to be more  oscillatory 

than that f o r  the incompressible case,  a result  s imilar  to that previously r e -  

marked on for f = 1 . 5 5  MHz. 

through 19 show that when the current  ra t io  is smal l  as at  1. 45 and 1. 50 MHz, 

the antenna current may be oscillatory, but not generally wavelike in nature. 

When however, the ratio is near unity, as at  1.55 MHz, the current  does vary 

along the axis with a predictable wavelength that corresponds well with KZr. 

The r ea l  current  

The axial current  curves plotted on Figs. 16 

(e) The Antenna Near Fields. 

The fields near the antenna were calculated for the isotropic 

plasma and the 5DJ vacuum sheath only, f o r  both the compressible  and in- 

compressible  plasmas. The plasma parameter  values used were the same 

as employed for the isotropic plasma resu l t s  thusfar presented and the f r e -  

quencies used for  the calculation were 1. 45, 1. 5 and 1. 55MHz, so that the 

plasma frequency of 1.5MHz could be bracketed. 

of the z and p electric fields, of both the E M  and E K  modes, the @component 

of the magnetic field and the perturbed electron number density were ca l -  

culated for the compressible plasma, while only the EM field quantities were 

of course to be obtained for the incompressible plasma. 

The complex components 

Because of the number of field quantities involved, and the fact  

that the fields a r e  dependent upon both p and z, it  is not pract ical  to present 

a detailed graphical picture of the variation of each field quantity with z and p .  

Instead, we have chosen to present here  only a limited amouth of the field ca l -  

culation resul ts  which a r e  felt to provide a typical picture of the significant 

aspects  of the infinite antenna near field behavior. In addition, since the 



surface current resu l t s  of the previous section show a z -dependence which 

is characterist ic of that of the other field quantities, we wi l l  give resu l t s  

here  for  only the p-variation of the fields. 

In Fig. 20 is shown the magnitude of the z-component of electric 

field a s  a function of p a t  z=O f o r  the incompressible plasma, and the 5D 

vacuum sheath and fo r  the three frequencies specified above. 

iately evident f r o m  the graph that the p -dependence of the z -directed electric 

field is not very sensitive to  the exciting frequency, particularly when note 

is made of the fact  that the frequencies used encompass the electron plasma 

frequency. 

-e 
It is immed- 

Also of interest  in this regard is the fact that the ra te  of decrease 

for the l a rge r  -1 of the electr ic  field with increasing radius is approximately p 

radii. This ra te  of decrease may at  f i rs t  thought be somewhat surpr is ing 

since the fields due to a source in a cylindrical geometry a r e  known to decrease 

a s  P -'I2. However, while a cylindrical s t ructure  is involved here ,  the source 

is of finite dimension, being the voltage applied ac ross  the exciting gap a t  z=O 

so that an  inverse p dependence is required for  large p .  If, of course, the 

source were to  extend to infinity along the antenna surface (i. e. an axial  ra ther  

than a circumferential  gap), a p -1 /2  dependence would be produced. The slight 

excess  of the field decrease over a 6' dependence a s  shown on Fig, 20 is due 

to  the lossyness  of the plasma medium. 

The z-component of the electric field is shown on Figs. 21 and 22  

f o r  the compressible  plasma, again for the ~ D A  vacuum sheath and the three 

frequencies  employed in Fig. 20, with Fig. 21  showing the E M  electric field 

alld Fig. 2 2  the EK electric field,  

the total  z-component of electric field obtained by adding the separate complex 

amplitudes of the EM and E K  components. 

,4!sc) shown or? Fig. 2 1  is the magnitude of 
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A comparison of Fig, 21 with the corresponding curves of Fig. 20 

shows that for the compressible plasma the EM electr ic  field is, at 1. 45 and 

1. 55 MHz, s imilar  to that obtained fo r  the incompressible plasma, the major 

difference being that for the compressible case the field magnitude at the sheath 

edge is somewhat higher, and the field decrease with increasing p exhibits a more  

oscillatory behavior. At 1. 5 MHz however, the compressible  plasma EM electric 

field is seen to be almost three orders  of magnitude la rger  at  the sheath edge 

than is the incompressible value, but falls  off so rapidly with increasing p that 

a t  about 5 to 10 m, the incompressible and compressible  values a r e  nearly equal. 

The EK electric field magnitudes shown in Fig. 2 2  may be seen 

to have values at the sheath edge nearly the same a s  the EM fields of Fig. 21. 

A s  f o r  the EM fields, the EK electric field at  1. 5 MHz is about two orders  of 

magnitude la rger  than the values a t  1. 45  and 1. 55 MHz. The EK electric field 

is seen to  decrease with p more  rapidly than the EM fields, particularly at 

1. 45 and 1. 50 MHz, reflecting the fact that the radial  propagation constant of 

the EK wave is la rger  than that of the EM wave by the rat io  v /vr. a. 
The most significant feature exhibited by Figs.  2 1  and 22 is the 

fact  that the total z-directed electric field at  1. 5MHz, obtained a s  the complex 

sum of the EM and EK components is, a s  shown on Fig. 2 1 ,  almost three o rde r s  

of magnitude l e s s  than the individual components, and on the same order  a s  the 

E M  field fo r  the incompressible case shown in Fig. 20. The EM and EK fields 

which individually become large at  1.5MHz compared with those at  1.45 and 

1. 55MHz, a r e  at the same time nearly 180' out of phase thus effectively can- 

celling out their  increased magnitudes. Some cancellation also takes place at  

1 .45 and 1. 55MHz, but not to the same extent, as shown by the total field curves  

for  these  frequencies also shown on Fig. 21. 
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T h i s  near equality in magnitude, and phase opposition of the z -  

directed EM and EK electr ic  fields a lso occurs  fo r  the p-directed electr ic  fields. 

It a r i s e s  because of the boundary condition used for  the electron velocity a t  the 

sheath-plasma interface in this  study. The boundary condition used here  is that 

the electrons which impinge on the sheath-plasma interface a r e  elastically re  - 

flected there ,  a type of boundary commonly called the rigid o r  hard boundary. 

Since, a t  the plasma frequency, the EM and EK components of the electron velo- 

city are proportional, with nearly the same  proportionality constants, to their  

respective electric fields ( to  within a factoi- on the o rde r  of l + i v / w ) ,  the cancel- 

lation of the EM and EK electron velocity components due to the hard boundary 

condition also resul ts  in the near cancellation of their  e lectr ic  fields. 

While the total electric field is understandably much smaller than 

the component EM and EK electr ic  fields a t  the plasma frequency, the increase 

in magnitude of these components in comparison with their  values just below 

and just above the plasma frequency is somewhat surprising. This  is especially 

so  since the E M  electr ic  field in the incompressible plasma does not exhibit this 

type of behavior. 

s ame  total  electric field value in either the compressible o r  incompressible plasma, 

and because of the field cancellation due to the velocity boundary condition at  the 

plasma frequency, the individual E M  and EK fields must be that much larger in 

the compressible plasma to produce the total  e lectr ic  field value required. 

It appears  however that the antenna excites pretty much the 

This peaking of the E M  and EK electr ic  fields at  the plasma f r e -  

quency in the compressible plasma may bear  some relationship to the relaxa-  

tion resonance that has  been observed using rocket o r  satellite-borne antennas 

in the ionosphere. The relaxation resonance is seen  as a ringing of the plasma 

at  characterist ic frequencies such a s  the electron plasma and cyclotron frequen- 

c i e s  after turning off the exciting signal. F e j e r  and Calvert (1964)  have suggested 
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that the relaxation resonance may be due to  a matching of the antenna 

velocity and the electrostatic (EK)  oscillation group velocity, which is 

minimized at  f 
P’ 

field for  a relatively long time. 

so that the antenna remains in a region of high electr ic  

The resul ts  obtained here  would tend to  

support this  contention to some extent, but provide additional insight into 

the problem. 

the rat io  of the velocity of light in f ree  space to  the r m s  e lec t ron  velocity, 

Since the group velocities of the EM and EK waves a r e  in 

the EM fields would propagate away from the antenna more  rapidly than 

the EK fields. Consequently, the E M  and EK electric field cancellation 

at  the plasma frequency would not persist  indefinitely a f te r  removing the 

exciting signal f rom the antenna, with the result  that the total electric field 

near  the antenna may appreciably increase in value before finally falling to 

zero  a s  the antenna moves out of the field of the EK wave. 

Thus, in addition to  the effect of the small  EK group velocity 

near  the plasma frequency producing a slowly decaying electric field near 

the antenna to account for the relaxation resonance, we have the increased 

magnitudes of the component E M  and EK fields at the plasma frequency and 

their  l a rge  difference in group velocity to  a lso account fo r  the relaxation r e -  

sonance. In other words, the resonance may be due to both the increased 

field magnitudes and decreased group velocities which result  at  the plasma 

frequency. 

f 
P 

some justifiable skepticism. 

It must be remarked that the large EM and EK electric fields at 

resu l t  f r o m  the hard boundary condition, about the validity of which there  is 

In addition our discussion here  of the fields has 

been confined to the isotropic plasma, while the ionospheric plasma is of course 

anisotropic, a factor which may be expected to somewhat modify the findings 

given fo r  the fields.  The extension of the field calculations to the compressible 

magnetoplasma may thus be indicated, though this i s  a very much more  com- 

plicated situation than the case considered, and there is no guarantee that the 



. 
I 
, calculations may be readily performed to  the required accuracy. 

plasma frequency sufficiently exceeds the electron cyclotron frequency how - 

ever ,  the plasma is nearly isotropic and the resul ts  presented here  may be 

quite close to the situation of interest  in the ionosphere, 

When the 
I 
l 
I 
I 

I 

0 
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f IV. Discussion . 
One of the motivations for the present study of the infinite antenna 

immersed in a plasma medium has been the fact that a finite antenna may be 

regarded a s  a truncated, infinite system. 

waves which propagate on the infinite antenna and assuming that the finite 

antenna current consists of multiply reflected current  waves of the type pro-  

pagating on the infinite antenna, the finite antenna current,  and its admittance, 

may be studied. 

antenna problem may be ca r r i ed  out using a rigorous boundary value problem 

approach, and that the infinite antenna current  is obtained from a Four ie r  in-  

tegral ,  ra ther  than as a solution to  an integral equation as may be the case  for  

the finite antenna. This  is particularly important in a problem involving a com- 

pressible  plasma medium, since then a pair  of coupled integral equations a r i s e  

whose solutions yield the finite antenna current.  

Thus, by investigating the current  

One advantage of this is that the formulation of the infinite 

Thus a s  a f i r s t  step in  examining the finite antenna in a complex 

environment such as a compressible magnetoplasma, it appears very worthwhile 

to look at  the infinite antenna problem. In addition, the medium influence on the 

finite and infinite antennas may be suspected to be s imilar  to  some extent ( this  is 

shown in the resul ts  of I and I1 for  the incompressible isotropic and anisotropic 

plasmas),  so  that the infinite antenna admittances may produce some insight into 

the behavior of the finite antenna in the same  plasma medium. 

Among the more  interesting findings of this study has  been the fact 

that above the plasma frequency, or the upper hybrid frequency for the magneto- 

plasma, the plasma compressibility has  l i t t le effect on the infinite antenna admit - 

tafice. This  result  may be a l i t t le unexpected when compared with some previous 

s tudies  of antenna admittance in a compressible plasma (See Cohen, 1962;  Chen, 

1964; Cook and Edgar, 1966) .  
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where it w a s  found that the EK wave may play a dominant role in establishing 

the antenna admittance, It becomes more  understandable when the i ( p ) 

curves a r e  examined, where it is found that the compressibility does indeed 

affect the shape of the t ransformed current a s  a function of ,9 , but in such a 

way a s  to  have little effect on the value of the Fourier  integral for the admit-  

tance. 

R 

The plasma compressibility a lso gives r i s e  to  a second charac-  

ter is t ic  wave solution near the EK wave number in addition to the solution 

found near  the EM plane wave propagation constant, but the contribution to the 

total infinite antenna current  coming f rom the E:K current  wave is negligible in 

comparison with that due to the EM wave. 

of the plasma compressibility on the antenna current  is that the characterist ic 

wave number near KE which is r ea l  for the lossless ,  incompressible plasma, 

is complex for the compressible case. The fact that the current  ar is ing f rom 

the EK current wave is negligible for the infinite antenna does not rule out the 

possibility however, than the EK wave may be an important factor in connection 

with a finite cylindrical antenna. 

length but long in comparison with the EK wavelength may present a much grea te r  

impedance to the F o u r i e r  current  components in the vicinity of the EM charac-  

ter is t ic  wave than to the EK character is t ic  wave, thus increasing the importance, 

of the EK contribution. The problem for  the finite antenna really becomes one of 

finding iR( f l  ) and iI( 8 ) ,  which for  the free-space medium and a short  antenna a r e  

well-approximated a s  a delta function at  It should be mentioned that 

Wunsch (1967) obtained approximate solutions f o r  the current  on a short  antenna 

in a compressible plasma, and found two components corresponding to the EM 

and EK characterist ic waves. 

A probably more  important effect 

An antenna short  compared with the EM wave- 

fj = KEo. 
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.- It may also be remarked that above the plasma o r  hybrid frequency, 

the vacuum sheath has  relatively little influence over the infinite antenna admit - 

tance. 

nitude of i ( 6  ) near the characterist ic wave solution at  the EK wave number, and 

thus tends to decouple the antenna from the plasma compressibility. While this  

is relatively unimportant a s  fa r  as the infinite antenna admittance is concerned, 

i t  may be a much more  significant factor when the finite antenna is considered, 

especially if  for the sheathless case,  the EK waves assumes  equal o r  major  

importance compared with the E M  wave. 

The vacuum sheath does have the effect however, of decreasing the mag-  

R 

When the frequency is less  than the upper hybrid o r  plasma frequency, 

the plasma compressibility and sheath a r e  found to exert  much greater  control 

over the antenna admittance than for the situation discussed above, a s  a lso does 

the plasma anisotropy. Of particular interest  is the fact that only when there  is 

a sheath o r  the plasma is compressible is there  a characterist ic wave solution 

throughout the frequency range below the plasma o r  hybrid frequency. 

t ime the re  is a strong similari ty between the character is t ic  wave solutions for  the 

incompressible, anisotropic, 5Da vacuum sheath case and the compressible i so -  

tropic and anisotropic plasmas f o r  the sheathless case,  

At the same 

The current on the infinite antenna is found to possess a wavelike 

nature with a propagation constant given by KZr  above f 

lower cutoff frequency depending on the plasma model used. 

frequency to mean here  the frequency below which the current  ratio is 0. 5 o r  la rger ,  

o r  f and below some 
P t  

We define the cutoff 

so that the current  has a rather  w e l l  defined wave nature. In the case of the sheath- 

l e s s ,  incompressible anisotropic plasma, the cutoff frequency is fh, while when 

there  is a vacuum sheath, the cutoff frequency Is I i i O r e  nearly (f f ’ /2 .  Fsr the 

compressible  anisotropic plasma, the cutoff frequencies a r e  also on the order  of 

(fh + f t ) / 2 .  

sheath, the cutoff frequency is about 0. 9 f 

h lt’ 

In the case of the compressible isotropic plasma, with o r  without a 

so that the isotropic plasma antenna 
P’ 
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curren t  is wavelike for all frequencies except very near the plasma frequency. 

Because the characterist ic wave numbers f o r  this la t ter  case a r e  on the o rde r  

of Kpo near  f but ra ther  rapidly approach KEo with decreasing frequency, it 

would appear that a finite antenna operated in this frequency range would exhibit 

a marked frequency dependence. 

the characterist ic wave numbers are near  K 

current ,  so that the electr ical  length of the antenna would not be so sensitive a 

function of frequency as f o r  the isotropic plasma. 

P 

When the anisotropic plasma is considered, 

in the regions of wavelike antenna Eo 

Since the current  is of a generally evanescent nature in the frequency 

range above the cutoff frequency and below f t  or  f 

infinite antenna and finite antenna admittances would be most alike in this range 

since the current reflections caused.by the ends of the finite antenna become less 

important. This has  indeed been found to be the case for  the sheathless, incom- 

pressible  isotropic and anisotropic cases ,  the resul ts  for  which a r e  given in I and 11. 

it might be expected that the 
P’ 

Besides affecting the infinite antenna admittance and current  in some 

interesting aspects, the plasma compressibility has  been found to produce a very  

significant alteration of the electr ic  fields near the antenna, at the electron plasma 

frequency. 

c r ease  by two to three  o r d e r s  of magnitude a t  the plasma frequency, compared 

with their  values on either side of it,  but they are  of nearly equal amplitude and 

opposite sign, to thereby maintain a relatively unchanged magnitude of the total  

e lectr ic  field as a function of frequency. Because of the difference in  the propa-  

gation velocities of the E M  and EK waves, it appears  that the total  e lectr ic  field 

near  the antenna may consequently remain large,  possibly even at f i rs t  increasing 

in value, for  a relatively long t ime af ter  the antenna exciting voltage is removed, 

to  provide a partial explanation for  the relaxation resonance. 

The separate  e lectr ic  fields of the E M  and E K  modes a r e  found to in-  
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.+ V. Summary and Conclusion 

This  investigation has  been concerned with the properties of 

an  infinite cylindrical antenna excited at  a circumferential  gap of non zero  

thickness and immersed in a lossy plasma medium. The antenna admit - 

tance w a s  the topic of principal interest in I, 11, and 111 (Miller 1967a; 1967b; 

1967c) respectively where the plasma medium treated w a s  isotropic and 

compressible, anisotropic and incompressible and anisotropic and com - 

pressible.  

the antenna current and near f i e l d s  for the three plasma models used. 

attempt has  been made in the formulation of the problem, which proceeds 

f r o m  the linearized fluid equations for the electrons together with Maxwell's 

equations to account to some extent for the inhomogeneous ion sheath which 

forms about a body at floating potential in a warm plasma by including a 

concentric f ree  -space layer,  o r  vacuum sheath, between the antenna and the 

external uniform plasma. The antenna current  and fields are obtained f rom 

a numerical  evaluation of the appropriate Fourier  integral, while the charac - 

t e r i s t ic  wave number solutions are found f rom the integrand of the current  

integral, with the numerical  resu l t s  being presented for  plasma parameter  

values typical of the E region of the ionosphere. 

In the present report  the subject of pr imary concern has been 

An 

The infinite antenna admittance has  been found to be relatively 

unaffected by the plasma compressibility and vacuum sheath above the plasma 

frequency (f ) for the isotropic plasma, o r  above the upper hybrid frequency 

( f  ), fo r  the anisotropic plasma. Below these frequencies however, there a r e  

significant changes f rom the antenna admittance for  the sheathless, isotropic, 

incorllpressibiie 2iasma bi-ofight about bjr the p!2~1~2 cczpressibi l i ty ,  V E ~ C U U ~  

sheath and plasma anisotropy, with the latter two fact o r s  appearing to be more  

influential in  determining the antenna admittance than the plasma compressibility. 

P 

t 
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The more  significant of the observed effects a r e :  (1) The antenna admit-  

tance for  the sheathless, isotropic, incompressible case is found to increase 

monotonically below the plasma frequency, whereas the presence of a 

vacuum sheath, plasma compressibility o r  plasma anisotropy resul ts  in one 

or  more  admittance maximum below f or f * (2 )  an admittance maximum 

which occurs at the electron cyclotron frequency (f ) when there  is no sheath 

is found to be shifted upward in frequency and reduced in magnitude by the 

presence of the vacuum sheath or the plasma compressibility; (3) an admit - 

t P’ 

h 

tance minimum or kink is found at f for the anisotropic plasma; (4) the col-  

l ision frequency dependence of the conductance in the isotropic plasma is l e s -  

sened by the plasma compressibility; (5) the admittance is capacitive above 

f or ft, is generally a lso capacitive below fh for  the anistropic plasma and 
P 

may become capacitive sufficiently below f for  the isotropic sheathed and/or  

compressible  plasma, otherwise being inductive. It is interesting to mention 

that effects (2 )  and (3) have been observed in the measured  admittance of an  

P 

P 

antenna operated i n  the ionosphere, 

The antenna current  is found to be wavelike with a propagation 

constant or wave number given ace  plane wave 

E M  propagation constant KEo above f o r  f t ,  P 
for a l l  the plasma models used. An additional cur ren t  wave with a wave number 

near the E K  plane wave propagation constant is found in the compressible  plasma, 

but i s  is of negligible amplitude compared with the fo rmer  current  wave. 

f f o r  the anisotropic plasma, or  below approximately 0 . 9  f for the isotropic 

plasma whenever there  is a vacuum sheath and /o r  the plasma is compressible,  

Below 

h P 

the current is again wavelike with a propagation constant which i s  l a rge r  than, 

but approaching, KEo. The effect of the sheath for all the plasma models used 

is to shift the current wave propagation constant c loser  to KEo, compared with 

the sheathless result. 
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While there  may also exist character is t ic  wave number solutions 
.* 

in the intervening frequency range bounded by the frequencies given above, 

the total current is not then wavelike, but evanescent in the axial direction 

near  the exciting gap. 

infinite and finite antenna admittances a r e  most alike because the reflected 

cur ren ts  f rom the ends of the finite antenna would be a minimum. This has 

indeed been found to be the case.  

This may be expected to be an a r e a  then where the 

A s  a final a r ea  of investigation the antenna near-fields a r e  found 

to  be significantly altered for the isotropic plasma by the plasma compressi-  

bility. The individual EM and E K  electric fields a r e  sharply peaked, but of 

nearly equal magnitude and opposite phase, at the plasma frequency, so that 

the resultant electrid field is much smaller than the separate  components, 

being approximately the same a s  found in the incompressible plasma. 

of the la rge  ratio of the EM to EK wave propagation velocity, the total electric 

field in  the vicinity of an antenna in a compressible plasma may consequently 

exhibit at  the plasma frequency an initial increase in value, o r  remain at  a 

high level f o r  a relatively long t ime after removing the antenna excitation. 

This  field behavior provides a possible explanation for the relaxation resonance 

that has  been observed in experimental ionospheric measurements .  

Because 

In summary then, the infinite antenna analysis that has been under- 

taken in  the present investigation has provided some numerical resul ts  that 

agree  in  a number of significant aspects with experimental  measurements  in-  

volving antennas immersed  in the ionospheric plasma. 

obtained f r o m  the infinite antenna current behavior may be helpful in further 

considerat;ofi of the admittar?ce of 2 finite, plasma - immersed antenna. 

In addition, the insight 



Appendix A. Boundary Coupling of the E M  and EK waves. 

It has  been pointed out above that as a consequence of using the 

rigid or hard boundary condition at  the plasma interface, the E M  and EK 

waves are  coupled at  the boundary. 

absorbing one, and in the particular case where the boundary admittance is 

infinite (this is sometimes called the soft boundary), there  is no boundary 

coupling. 

E K  waves in  the fo rmer  case,  and only the E M  wave in the la t ter  case.  

Actually, the boundary admittance need not be infinite, for  the plasma 

parameter  values of interest  here,  to  negate the boundary coupling as a 

practical  matter,  but may have the finite admittance value derived by Balmain 

(1966) for  what he called an absorptive boundary, and still be negligibly small .  

When however, the boundary is an  

Consequently the antenna may exciEe the fields of both the EM and 

This result is readily shown for  the isotropic plasma, with or 

The velocity boundary condition may be written without a sheath. 

. 

where v is the radially directed electron velocity, n is the t ime varying 

electron number density, YB is the surface admittance (after Cohen, 1962) 

and A 1  is applied at the plasma-sheath interface, the quantities involved being 

evaluated in  the plasma at p = s .  

write ( A l )  as 

P 

Following the development of I, we can 
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I 
where Hd2) is  a Hankel function of the second kind and order  0, the pr ime 

denotes differentiation with respect t o  argument, m and -e are the electron 
I *- 

mass and charge, is the permittivity of f ree  space and 
0 I 

2 2  
= KE -/3 

The electron collision frequency has  been set  equal to  zero  for simplification, 
, 
I and Ap and AE a r e  the Fourier  coefficients for the transmitted EK and EM 

i fields in  the plasma outside the sheath that a r e  produced by the antenna. 
I 

When YB is zero (the hard boundary) then A E  and Ap  cannot 

be separately zero, thus demonstrating the coupling which the boundary 

brings about. If however, YB has  a value of infinity in (A2), then it is ob- 

vious that Ap must be zero, so  that in this  case  there  is no EK field in the 

plasma, and the antenna excites only an EM field. 

If we consider the intermediate value for Y derived by Balmain B 
f o r  the absorptive boundary, then we use 

2 e 
€,mu 

= s m  y B  P 

Upon rewrit ing ( A l )  in the form 



we see that the magnitude of the term containing YB in the denominator of -, 

(A4) relative to unity w i l l  determine the influence of YB on the magnitude of 

Ap compared with AE. 

quency of 1 . 5  MHz and an  electron temperature of 1, 500°K, which c o r r e s -  

pond to the values used for the calculations, and noting that for  small 

arguments, 

Upon using a frequency of 2 MHz, a plasma f r e -  

the YB t e r m  in (A4) becomes approximately 

In view of the value of (A5),  we  see that the YB term in  the de-  

nominator of ( A 4 )  is generally dominant. 

magnitude, in comparison with AE, by an o rde r  of magnitude o r  more.  

A E  may be determined f rom the expressions given in I to be largely insensitive 

to  YB ( this  is easily seen by observing that where HA2);xps) appears  in the 

expressions, it should be multiplied by the square bracket term in the denom- 

inator of (A4)), then we conclude that the E K  field amplitudes are reduced by 

an  order  of magnitude o r  more for  the absorptive boundary compared with the 

rigid boundary. 

eliminated for practical purposes by the absorptive boundary since the com- 

pressibility has been found to be of negligible importance above f for the hard 

boundary, and the plasma compressibility is not "seen" by the antenna. 

the admittance i s  strongly influenced by the plasma compressibil i ty below f 

however, Balmain's absorptive boundary admittance may not eliminate the 

(:ompressibllity effect. 

This  means that Ap is reduced in  

Since 

Thus the effect of the boundary coupling to the E K  mode is 

P 
Because 

P 
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. 
a -  A similar development may be followed to demonstrate that the 

soft boundary for the compressible, anisotropic plasma resu l t s  in this case 

also in no boundary coupling of the E M  and EK modes. An important dif- 

ference in this case is however the fact that the anisotropic medium itself 

produces such coupling, so that even without the boundary contribution, an 

EK-type mode is excited by the antenna. 

Finally, we may also note that when we use  YB = 00 for  the soft 

boundary in (Al) ,  it  may be seen that for  v to remain finite and thus satisfy 

the linearization, n must be zero  at  the boundary. If then the EM and EK 

waves a r e  not coupled by the medium, there  is no mechanism to produce a 

non zero  n in the medium due to the non zero  plasma temperature,  so  that 

the EK wave is not excited. 

P 



, 

Appendix B. Conductance Dependence on Electron Temperature  and 

Collision Frequency . 
We want to  discuss  here  the behavior of the antenna conductance, 

particularly below the plasma frequency, as a function of the electron tem- 

perature and collision frequency. In o rde r  to simplify the discussion, we 

w i l l  consider only the isotropic sheathless case,  so that the antenna current  

at  the exciting gap assumes  the form 

where 

E = N2 
E 

2 2 w  
K =  E v -  €E 

2 2 w  K p =  - 2 
r 

€P 
V 

and the other symbols have been previously defined. 
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. 
Since we a r e  interested here in the case  where f c  f then the 

In 
P' b *  

Hankel function arguments a r e  nearly pure imaginary (for small  u / w ) .  
addition, we wi l l  require the Hankel function arguments to be small, so 

that a suitable closed fo rm expression may be employed for the Hankel 

functions. Since the x ' s  a r e  nearly pure imaginary, we write 

where 

Now 

where 

so 

where 

-Y 

A =  - i X  

r = f.7811 

A, = 7/fi2-KE2 
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and 
4 ill A p  Pe P 

= dr + id i  

72 

with Kp0 replacing KEo in (B2) to  get (B3). 

a and 

Note that (B2) and (B3) require  

to be small  compared with unity. Also 
e P 

Then iz( P may be written a s  

i ( P  - 2 r i  S( f i )  w 0 [ 1-N2iZ(2 -N2) ]  
Z 

N~ [ -A:ln(A ec r / 2 ) e x p ( 2 i A  + iA I-iZ)/N \ 2  
e e 

Now for small  electron temperatures,  such that 

2 2  
then n e  z >>a - KEo 

2 b 2  
e 2 ( N 2 1 )  

which is in the a rea  of the current  peak at  f = l .  4 MHz ( s e e  Fig. 7). Thus the 

denominator of (B4) becomes 

r -. 



I 
Then the real current  component is written 

I *- 

I 

i R ( p  ) = Re 

n + i n i  
d r + i d i  
r = R e  

nrdr + nidi 
- - 

d 2 + d i  2 
r 

We note that di and nr a r e  proportional to  2 / ,  so that when 

u = 0, 

d i = n  = O  r 

and the current  is pure imaginary, i. e . ,  the conductance is then zero.  It may 

be noted that when d is zero  (this is the character is t ic  wave solution which is r 
discussed more fully in Appendix C), then 

i n 
iR( P o )  = - 

di 

and that iR may apparently become infinite when I/= 0, in contradiction to the 

previous observation. This  is an  example of a double limit process  where two 

apparently different answers  can be obtained depending on the order  in which 

the limits are taken. 'Note that when Z=O, then i ( .  ) becomes infinite when dr=O. 1 6  
The general  behavior of the i ( f i  ) curve shown in Fig. 7 is in  R 

agreement with (B6). 

proportional to v, while the peak value appears  to be in  proportion to v. 
The portion of the curve away f rom the dr = 0 a r e a  is 

If we now consider the limit of vanishing electron temperature,  

then in  o rde r  to  ensure the Hankel function approximation validity, we wi l l  r e -  

quire  that 
K p c < <  1 

lim v r - 0  
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and we note l im K p - c c o  

vr-0 

W e  a r e  thus required to  have the cylinder radius vanish as fast  as the electron 

velocity. In this case then, the denominator given by (B5) becomes 

and we observe that now di/dr-O a s  c---0. 

Thus 

vr- 0 

c-0 

f <  f 
P 

which is the cold plasma result .  

If on the other hand, we keep c constant as vr-O, then we may 

use the la rge  argument fo rms  for  the Hankel functions since we know that the 

peak i n ,  p is near Kp, to  get 

lim 

v -0 r 

s o  that the current may be approximated by, 

A s  before ,  we note that % > >Ae so that the denominator is approximately 
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We note that the r ea l  part  of the denominator becomes zero when 

so that 0 

, P 2 =  KPOA - 
( 1+N2) 0 

It may be seen that i,(B )d Z when the r ea l  part  of the denominator of (B7)  

is much la rger  than the imaginary part, while i,( fi ) o( Z 

ver se  is true.  This is the behavior exhibited by the graphical i,( 6 ) resul ts .  

In order  to estimate the peak contribution f rom the a r e a  of the Bo value given 

by (B8) to the total r ea l  antenna current, we f i r s t  write 

-1 when the con- 

and solve for the value of at which the r ea l  and imaginary denominator 

components a r e  equal. We find that 

d ( N 4 - l )  = @ N 4 ( l - 2 d + a / N 4 )  
P 

from (B3), there  is obtained and using the value of If\; 
P 

Z 

2(N2 -1) 
A -  

Thus, when exceeds the value given by (BlO),  the denominator of (B7)  is 

donimant and i,( 6 )o( Z, but when is l e s s  than this value then i,( fl )o( Z-'. 

We then approximate the integration of i,(B ) through the peak by 

P ( 1 + 0 )  
O r  
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Since 8,- K Po and we a r e  interested in the limit vr-O, then S,6>>1 for ., 
smal l  enough vr. 

of (B11)  is 2 poo, s o  that the argument of the sin( 

changes by 8 L ! ! ! .  If /30A&z TT and z= 6 / 2  so the cos( Bz) t e r m  is a lso  

In addition the change in 0 over the range of integration 

t e r m  in S( (3 ) 

0 

relatively constant, then approximately, 

R o( ith ) 
I , ( 5 / 2 ) 0 (  2-l J d . B / B  

B0(l-A) 
-1 i + A  

1-a = 2 In( -) 

- 1 p -  1 = z  2 . . -  - 
(N2 -1) 

If on the other hand, B A 6 > > TT, then 

which because of the oscillation of the sine and cosine t e r m s  is l e s s  than 

(B12) ,  and a s  vr+ then also I,--O. 

Thus,  for a non zero  electron velocity, and smal l  collision f r e -  

quency, the current f rom the peak at  P o  is not very sensitive to  the collision 

frequency. When however, the velocity becomes vanishingly small ,  the peak 

current  a lso becomes vanishingly small ,  and contributes negligibly to  the 

total  current,  o r  the antenna conductance. 



l .Appendix C. Approximate Characterist ic Wave Number Solutions. 

i 
1 8 -  

In this appendix, we  discuss the character is t ic  wave solutions 

fo r  the various isotropic plasma models considered above. In particular an 

approximate expression is obtained fo r  the characterist ic wave number f rom 

the integrand of the Four ie r  current  integral, for the sheathless case,  while 
I 

the modification of the sheathless result brought about by the vacuum sheath 

is also examined. We will deal with, in  order ,  the sheathless incompressible 

and compressible plasma cases ,  followed by the vacuum sheath incompressible 

and compressible plasmas. 

(1) The sheathless, incompressible plasma. 

The Four ie r  current  may be written as 

where the various quantities have been previously defined. 

that iz(6 ) becomes infinite when 

It may be seen  

A E  = 0 

Thus, 

P =  0 KE = v5 
which becomes for  z < I 1 -N2 I 

8 ,  O - vR ql-- 2 ( 1 - N  ) ) (C2b) 

It is apparent that P o  is nearly pure r e a l  above f and nearly pure imaginary 

below it ,  becoming pure r e a l  and pure imaginary respectively when u =  0. 

The behavior indicated by (C2b) is exhibited by the resu l t s  of Fig.  11. 

P 

( 2 )  The sheathless, compressible plasma. 

In this case,  the Fourier current  may be expressed as 



If we consider the collisionless case, i t  may be concluded that D(p ) # 0 

unless the Hankel function arguments a r e  pure imaginary. 

that &ither f < f o r  f >  f and B > Kp. 
P P 

This means 

Assuming smal l  (compared with 

unity) imaginary arguments  s o  that 

r 1 then we have 

e J D ( 0 , )  = 0 = 

1 and a r e  given by (B2) and (B3). Thus, is a solution to  where 
P e 

D ( p )  = 0 or 
K ~ ~ ~ (  1 - N ~ )  p 2  = 

0 
1 -N D mcr/2) e 

P' and we have a transcendental relationship for 0,. But since for  f > f  

then the denominator of (C5) must  be nearly zero,  so 2 2 0 0 - K p Z > K E o  , 

o r  

This can be written as 
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I 
~ 

I 

1 

i I 
, 
I 

1 
I 
1 

0 

lie arranging , we obtain .- - -2 

0 
- - -  I ;Po2( 1 -N2) 

But i f  N 2 C 1 (i. e . ,  f >  f 1, then 2/N 2 > 2  and since Kpoc<< 1 is assumed, 
P 

we get 

P 0 = K ~ , ~ ( I - N ~ )  

which checks the resu l t s  of Fig. 11 quite well. 

The solution obtained by Seshadri (1964), is 
-1 

P 0 = Kpo2(1+N2)  

2 and when N (( 1, this is approximately 

p 0 
Kpo 2( 1 -N2) 

in  agreement with (C9). 

If ra ther  than N 2 < 1, we have 15 N 2 , then approximately 

0 2 ,  [ ,,Kc-- - cr]2~2 ($1-2 
0 P o  2 (C10) 

A s  an  example, when N 2 = 2 , p from (C10) is 5. 1 m -1 while f rom Fig. 11, 

is 4.7  m -1 . For  N 2 = 3, (C10) produces 1 .7  m -1 while KZr f rom Fig. 11 

A s  N 2 gets  la rger ,  ((210) becomes less accurate,  since KEo2has 

enough N 2 . Thus we s e e  from (C6), that a s  N 2 becomes large enough, then 

0 

K 

is 1 . 2  m . 
z r  

-1 

been neglected in (C8)  compared with ooJ which approaches KEo for large 

since 
cz Kpo2 N2 

P 

t h e  log ra t io  in  the denominator of ((76) approaches a constant less than unity 

which is independent of P I  ando, 2 is close to, but l a rge r  than KEo, 2 given by 
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P' 
We have so f a r  examined (C4) for the root near  Kpo when f >  f 

It may be seen however, that there  is another root which is not however, pure 

real ,  locatednear  K If we consider the case where vr--O so that the large Eo' 
argument approximations may be used f o r  the Hankel functions whose argument 

involve A,, then D( 6 ) = 0 becomes, again assuming x E c  smal l  and imaginary, 

- X e 2c ln(X e r12) I N 2 -  P 0 2 / A p  = o 
2 We obtain 6 as 

KEo (1-N2)  

i + ~ ~ /  [ ~ p ~ c i  - N ~ ) C  1n(X ec n2)] 
Since Kpoc >> is assumed in obtaining (C12), we see  that 

P 0 e KEo 2( 1 -N2) 

Thus, in the limit of vanishing electron temperature,  a character is t ic  wave 

solution is found which agrees  with the incompressible result  given by (C2b). 

fo rms  may be 

used for  the Hankel functions, e.  g. the cylinder radius may be made a rb i t r a -  

r i ly  small, then (C4) becomes again for  1, imaginary, 

If we consider the case  where the smal l  argument 

We observe that (C14) may not be satisfied in  general  f o r  a pure r e a l  value of 

P If however, the limit c-0 is examined, the solution approaches a pure 

r ea l  value. Solving for P o 2  f rom (C14), there  is obtained 

0' 



0 

2 
s- which is again a transcendental expression, for p . We note that the KZr 

values presented in the report  a r e  the F values for  which the r ea l  part of 

((214) a r e  zero, o r  

which has  the same form a s  (C6). If 

2 2 
then it appears that KZr is a good approximation to r ea l  ( , b  ). 0 

It is thus seen that the plasma compressibility, in addition to 

leading to  a characterist ic wave number solution near Kpo, changes the r ea l  

incompressible plasma characterist ic wave soltuion at KE to a complex num- 

ber  whose r ea l  part is approximately equal to KE. A detailed examination a€ 

the integrand of the Fourier  integral  for the current,  a s  is presented in Section 

I11 a. shows however, that the infinite antenna current for  the compressible 

plasma is dominated by the contribution coming f rom the peak near KE, even 

though the characterist ic wave number f o r  this  current  wave is complex ra ther  

than rea l ,  a s  is the case fo r  the current wave whose wave number is near Kpo. 

When the electron temperature  or  the cylinder radius approaches zero, then 

the wave number near KE becomes real. 

( 3 )  The vacuum sheath, incompressible plasma. 

The Fourier  current  then has  the form 



where 

and the MI functions have the form 

+ >x 
and where the 

ation with respect to  argument o r  lack of it,  a s  the case  may be. 

are pr imes  o r  blanks in (C17) and (C18) to denote differenti- 

A l s o  

and s denotes the sheath radius. 

sheathless case, then (C17) and (C18) reduce to (C l ) ,  since then W(c, S) = 

W(c , s ) = 0 and W(c, s ) = -W(c , s ) .  

It may be verified that when s = c ,  i. e. the 

I 1  1 1 

Before we can examine the behavior of D( 0 ), it  is necessary to  

determine the properties of the W -functions for  r e a l  or imaginary arguments.  

where Jn and Nn a r e  the Bessel  and Neumann functions, we can show that 

r 1 

Thus for r e a l l E o J  it is obvious that a l l  the W-functions a r e  imaginary. 

When however, the arguments a r e  imaginary, then since the 

negative root must be used, we have 
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-. where In and Kn a r e  the modified Bessel functions of the f i r s t  and second 

kind respectively. 

W(c, s), and W(c , s ) a r e  imaginary, while W(c , s )  and W(c, s ) a r e  real .  

The properties of the W-functions may be summarized as :  

Thus we may deduce that for imaginary arguments,  
1 1  1 1 

Real  Arguments Imaginary Arguments 

An examination of (C18) fo r  f ,  f shows that p >KE is required 
P 

for  the Hankel function ratio not to be complex, the ratio being then negative 

imaginary. If .p <KEo then, the W-function ratio is positive real ,  while h, 
is negative imaginary, so  that the second t e r m  is D(@ ) is positive real .  Thus 

D( 6 ) can become zero,  and a characterist ic wave solution is expected only f o r  

KE< B C KEowhen f > f  

Since, for  smal l  arguments, 

the two t e rms  in (C18) being otherwise additive. 
P' 

~ ( c ,  s )  2 l n (c / s )  

4i  

TAEoS 

and 
W(c, s ' )  = - - 

and 
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It may be seen that when c=s ,  then (C22) reduces to  sheathless 

resul t  given by (C2b), and for zero collision frequency, Po is pure real .  

addition, since the log arguments a r e  less than 1, then tbe log t e r m s  in  (C22) 

a r e  negative, and because cE< 1, then the bracket in (C22) is positive and 

greater  than unity, so  that bo is indeed la rger  than KE. A fur ther  examina- 

tion of (C18) for  the c a s e , P  >KEo reveals  that the second t e r m  adds to  the 

f i r s t ,  so D(,B ) has no zero  then and there  is no character is t ic  wave solution in 

this range. 

with ((222). 

In 

Finally, the resul ts  of Figure 11 may be seen to  be in  agreement 

If w e  now consider the case where f < f then again utilizing our 
P’ 

knowledge of the behavior of the W-functions and other factors  in (C18), it may 

be concluded that /3 >KEo is required for  a solution to D ( 8  ) = 0. The smal l  

argument approximations f o r  the Hankel and W -functions leads to  the same 

expression for Bo2 for  fc f a s  was found for  f > f  

the values obtained for KZr as shown on Fig. 11 become much la rger  than KEo 

near f 

P o  >>KEo,  and thus 

as given by (C22). Since 
P P’ 

it appears that the denominator of (C22) must be nearly zero  for  
P’ 

I 

so that when f is near  f 
P 

2 2 p s u , -  

ST 0 
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1 I P O  2 = KE: [ 1 + l n ( h e s  rI2) / l n (c / s )  
I 

2 
l and Po is observed to approach KEo. 

It is also of interest  to see how P o  behaves when the arguments  
I 

lEs, etc. a r e  large s o  that we may use, as a f i rs t  approximation, the large 

argument Hankel function expressions. 
I 

In this case,  

1 
c. This turns  out to  be a fairly good approximation to K 

near f while (C25) yields /3 o-10 also ( s here is 0.089 m).  A s  N2 gets 

since K - 10 zr z r  
1 

P 
larger ,  the ( c / s )  t e r m  in (C23) rapidly reduces p o2 in value, which is in 

agreement with the graph on Fig. 11. When N becomes sufficiently large,  2 

sinh [ 1 (s-C)] - -  4i 

W(C, s )  % = Leo@ 
cosh [ (s-c)] 4 eo 

eo 

- “ A *  W(c, SI) = 

= P2-KEo 2 
eo where 

so 1 1 e = -1 eo tanh[AeO(s-c)  J 



1 - fEtanh2 [A EO( s -c)] 

1 - 2tanh2 [ Aeo( s -c), 1 E 
and 8 0  2 =  KEo2 

The approximate expression f o r  Po2 is seen to provide a r e a l  solution only 
2 2 when N >2 and indicates that a maximum value may be expected at N = 2 ,  

2 The curve on Fig. 11 f o r  this case has a maximum for N between 1.55 and 

1. 15. Evidently, the approximations used in deriving (C26) have resulted in 

an expression for  Po2 which is only qualitatively cor rec t .  It appears  f r o m  

(C25), that the thicker the sheath, the more  nearly cor rec t  wi l l  be (C26). 

(4) The vacuum sheath, compressible  plasma. 

In this  case we obtain 
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It may again be verified that (C27) reduces to each of the special  cases  

previously considered when v ~ 0  and/or s-c. 

pressibility has  resulted in adding a new t e r m  to each d the numerator and 

denominator of iZ(p  ) compared with the incompressible case of (C17), it  

should suffice to  examine these new terms.  

Since the plasma com- 

The observations previously made for the sheathless, compres-  
I 

sible plasma also apply here  in that even with zero electron collision fre- 

quency, there  is no possibility for  a zero in D(P ) when f > f  unless 6 >Kp. 

Again using the small  argument forms  for  the Hankel functions we find f rom 

(C26) that, for p >Kp, 

I 

P 

or  

and 

This expression is also valid when f c f  and P>KEo; i f  P<KEo, then D( P ) 

has no zero.  The special cases  considered previously may be obtained f rom 

(C 30) by letting v-0 and/or  s-c. r 

P 



, 

. 
It is interesting to note that to a f i r s t  approximation, the sheath does not 

shift the value of Po , a s  a comparison of (C30) and (C6) shows. Again 

noting that (C30) is derived for @Kp, then the denominator of ((230) 

must be nearly zero, and consequently 

2 

(C31) 

C 

P 4 Kp > >KE, then 0 and since 

(C32) 
0 

- 
which is the same as (C8) except for the ( c / s )  t e rm.  If N2< 1, then we 

find f rom (C32) approximately the same expression for  /3 o2 a s  given by (C9). 

If however 1 < N  , then (C32) yields 2 

L -J 

(C33) 

We thus find that with the approximations used here ,  the sheath does not 

affect the value of Po , when the plasma is compressible,  in contradiction 

to our numerical  results.  However, in this  derivation the small argument 

forms  have been used for the Hankel functions, and since A..ps F 1 o r  

la rger  near  f 

the numerical  calculations a r e  concerned. 

2 

these approximations a r e  evidently not too good as far a s  
P’ 
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If we consider f >f and KE< 0 <KEo a s  before, then D( P ) 
P (cr 

o r  

I 
J 

2 i  - -  
- T A P S  

L 
(C34) 

Again noting that KZr = Re( P o )  is obtained f rom the 6 

of ((232) is zero,  we get 

where the r e a l  part  

the same in fo rm as (C30) except here we have KE< P c KEo ra ther  than 

P >Kp a s  for (C30). 

(5) Anistropic Plasma.  

This case has been examined by Lee and Lo (1967)  for  the incom- 

pressible,  sheathless plasma, a s  mentioned in the text. When however, we 

consider the vacuum sheath, anisotropic incompressible plasma, o r  the sheath- 

less ,  anisotropic compressible plasma, the current expressions become ex-  

t remely  complicated. 

for P 

and 12  show however, the general trend of the characterist ic wave solutions 

Consequently, the derivation of a relatively simple form 

is quite difficult and is not attempted here.  The resul ts  shown on Fig. 10 

when the plasma is anisotropic and/or compressible and for  the incompressible 

case,  show the effect of the vacuum sheath. The resul ts  obtained here  pertain- 

ing to the characterist ic wave numbers a r e  briefly summerized below. 



> 

( 6 )  Summary. 

The approximate expressions derived here for the character is t ic  

wave solutions, together with the numerical  resul ts  presented for  KZr in 

section I11 2 show the following general  behavior. 

(a) The Sheathless Case. 

When the plasma is incompressible, and isotropic, the charac-  

ter is t ic  wave number is equal to  K E o s  and thus is r ea l  for  only the case 

f > f 

approximately KEo f i - N 2 / ( 1  -H ) and is r e a l  for  f > f t  and f<  fh. When the 

plasma is isotropic and compressible, there  a r e  two character is t ic  waves 

above f 

is complex whose r ea l  part is approximately KEoqfLI Below f 

wave number solution which is r ea l  and var ies  f rom nearly a s  large a s  KPo 

near  f to nearly a s  small  a s  KEo when fc < f For the anisotropic, com-  

pressible plasma, there  a r e  again two character is t ic  wave number solutions 

above ft, again one near K 

solution is obtained which rapidly decreases  f r o m  a value on the order  of the 

acoustic wave number to the order  of the electromagnetic f r ee  -space wave 

For the anisotropic incompressible plasma, the wave number is 
P’ 

2 

one r ea l  solution equal to approximately K p o K a n d  the other which 
P’ 

there  is one 
P’ 

P P‘ 

while for f < f and the other near  KEo, one 
P’ P o  

number a s  f << f 
P’ 

(b) The vacuum sheath case. 

The effect of the vacuum sheath, besides resulting in r ea l  charac-  

ter is t ic  wave number solutions in frequency ranges where there  may be none 

fo r  the sheathless case,  shifts the wave number in the direction of the E M  f r e e  

space wave number. 

creased in magnitude towards KEo, and for  the compressible  plasma the wave 

number near K is decreased in  value towards KEo. Below f t  o r  f the sheath- 

1C:fjs wave numbers a r e  decreased in magnitude by the addition of the sheath in 

Thus above f t  o r  f the wave numbers  near KE a r e  in- 
P 

P P’ 
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t- 

'4. 
the direction of KEo. This behavior is to be expected, since as the vacuum 

sheath is made thicker, the medium surrounding the antenna becomes more  

and more like free space and the wave behavior consequently a lso approaches 

the free  space case. 
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Errata 05627 = 14 -S 

Page 18 Second line below Eq. ( 8 )  now wads  KE - 0.0285,  

should read KEo= 0.0277 , 

Bottom line now r ~ a d 1  Kp = 33. I ,  

should read Kp = 33.8.  

Interchange -lues of X on X = 5 and X = 2.5 curves on Fig. 4 

Curve 4 should read X = 5 on Fig, 13 . 

Page 18 

Page 22 

Page 41 

Pagc 72, 73, 74; Equations (B4), (R6) and (€37). Replace the term 
2 - i2(2-N ) by -iZ and multiply the numerator by - I .  


